Skip to main content
Log in

Thermodynamic properties of the ternary oxides in the Eu–Ru–O system by using solid-state electrochemical cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The Gibbs free energies of formation of Eu3RuO7(s) and Eu2Ru2O7(s) have been determined using solid-state electrochemical technique employing oxide ion conducting electrolyte. The reversible electromotive force (e.m.f.) of the following solid-state electrochemical cells have been measured:

$$Cell{\left( I \right)}:{{\left( - \right)}Pt} \mathord{\left/ {\vphantom {{{\left( - \right)}Pt} {{\left\{ {Eu_{3} RuO_{7} {\left( s \right)} + Eu_{2} O_{3} {\left( s \right)} + Ru{\left( s \right)}} \right\}}}}} \right. \kern-\nulldelimiterspace} {{\left\{ {Eu_{3} RuO_{7} {\left( s \right)} + Eu_{2} O_{3} {\left( s \right)} + Ru{\left( s \right)}} \right\}}}//CSZ//O_{2} {{\left( {p{\left( {O_{2} } \right)} = 21.21 kPa} \right)}} \mathord{\left/ {\vphantom {{{\left( {p{\left( {O_{2} } \right)} = 21.21 kPa} \right)}} {Pt{\left( + \right)}}}} \right. \kern-\nulldelimiterspace} {Pt{\left( + \right)}}$$
$$Cell{\left( {II} \right)}:{{\left( - \right)}Pt} \mathord{\left/ {\vphantom {{{\left( - \right)}Pt} {{\left\{ {Eu_{3} RuO_{7} {\left( s \right)} + Eu_{2} Ru_{2} O_{7} {\left( s \right)} + Ru{\left( s \right)}} \right\}}}}} \right. \kern-\nulldelimiterspace} {{\left\{ {Eu_{3} RuO_{7} {\left( s \right)} + Eu_{2} Ru_{2} O_{7} {\left( s \right)} + Ru{\left( s \right)}} \right\}}}//CSZ//O_{2} {{\left( {p{\left( {O_{2} } \right)} = 21.21 kPa} \right)}} \mathord{\left/ {\vphantom {{{\left( {p{\left( {O_{2} } \right)} = 21.21 kPa} \right)}} {Pt{\left( + \right)}}}} \right. \kern-\nulldelimiterspace} {Pt{\left( + \right)}}$$

The Gibbs free energies of formation of Eu3RuO7(s) and Eu2Ru2O7(s) from elements in their standard state, calculated by the least squares regression analysis of the data obtained in the present study, can be given, respectively, by:

$$\left\{ {\Delta _{f} G^{o} } \right.\left. {{{\left( {Eu_{3} RuO_{7} , s} \right)}} \mathord{\left/ {\vphantom {{{\left( {Eu_{3} RuO_{7} , s} \right)}} {{\left( {kJ \cdot mol^{{ - 1}} } \right)} \pm 2.5}}} \right. \kern-\nulldelimiterspace} {{\left( {kJ \cdot mol^{{ - 1}} } \right)} \pm 2.5}} \right) = - 2,785.2 + 0.567 \cdot {\left( {T \mathord{\left/ {\vphantom {T K}} \right. \kern-\nulldelimiterspace} K} \right)}; {\left( {{922.5 \leqslant T} \mathord{\left/ {\vphantom {{922.5 \leqslant T} {K \leqslant 1194.9}}} \right. \kern-\nulldelimiterspace} {K \leqslant 1194.9}} \right)}.$$
$$\left\{ {\Delta _{f} G^{o} } \right.\left. {{{\left( {Eu_{3} Ru_{2} O_{7} , s} \right)}} \mathord{\left/ {\vphantom {{{\left( {Eu_{3} Ru_{2} O_{7} , s} \right)}} {{\left( {kJ \cdot mol^{{ - 1}} } \right)} \pm 2.9}}} \right. \kern-\nulldelimiterspace} {{\left( {kJ \cdot mol^{{ - 1}} } \right)} \pm 2.9}} \right) = - 2,256.6 + 0.579 \cdot {\left( {T \mathord{\left/ {\vphantom {T K}} \right. \kern-\nulldelimiterspace} K} \right)}; {\left( {{995.3 \leqslant T} \mathord{\left/ {\vphantom {{995.3 \leqslant T} {K \leqslant 1260.6}}} \right. \kern-\nulldelimiterspace} {K \leqslant 1260.6}} \right)}.$$

The uncertainty estimates for Δf G o(T) include the standard deviation in e.m.f. and uncertainty in the data taken from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cao G, McCall S, Crow JE, Guertin RP (1997) Phys Rev Lett 78:1751

    Article  CAS  Google Scholar 

  2. Taira N, Wakeshima M, Hinatsu Y (1999) J Phys: Condens Matter 11:6983

    Article  CAS  Google Scholar 

  3. van Berkel FPF, Ijdo DJW (1986) Mater Res Bull 21:1103

    Article  Google Scholar 

  4. Harada D, Hinatsu Y (2001) J Phys: Condens Matter 13:10825

    Article  CAS  Google Scholar 

  5. Harada D, Hinatsu Y (2001) J Solid State Chem 158:245

    Article  CAS  Google Scholar 

  6. Taira N, Wakeshima M, Hinatsu Y (1999) J Solid State Chem 144:216

    Article  CAS  Google Scholar 

  7. Taira N, Wakeshima M, Hinatsu Y, Tobo A, Ohoyama K (2003) J Solid State Chem 176:165

    Article  CAS  Google Scholar 

  8. Pike GE, Seager CH (1977) J Appl Phys 48:5152

    Article  CAS  Google Scholar 

  9. Carcia PF, Ferreti A, Suna A (1982) J Appl Phys 53:5282

    Article  CAS  Google Scholar 

  10. Horowitz HS, Longo JM, Horowitz HH (1983) J Electrochem Soc 130:1851

    Article  CAS  Google Scholar 

  11. Egdell RG, Goodenough JB, Hamnett A, Naish CC (1983) J Chem Soc Faraday Trans 79:893

    Article  CAS  Google Scholar 

  12. Taira N, Wakeshima M, Hinatsu Y (2000) J Solid State Chem 152:441

    Article  CAS  Google Scholar 

  13. Smith, McCarthy (1975) Penn State Univ., Univ. Park, Pennsylvania, U.S.A., JCPDS Grant-in-Aid Report

  14. Cao G, McCall S, Zhou ZX, Alexander CS, Crow JE, Guertin RP, Mielke CH (2001) Phys Rev B 63:144427

    Article  CAS  Google Scholar 

  15. Cao G, McCall S, Zhou ZX, Alexander CS, Crow JE, Guertin RP (2001) J Magn Magn Mater 226:218

    Article  Google Scholar 

  16. Guertin RP, McCall S (2001) Inter J Mod Phys B 16:3317

    Article  Google Scholar 

  17. Pratt JN (1990) Metall Trans A 21A:1223

    CAS  Google Scholar 

  18. Singh Z, Dash S, Prasad R, Sood DD (1994) J Alloys Compd 215:303

    Article  CAS  Google Scholar 

  19. Barin I (1995) Thermochemical Data of Pure Substances, vols. I and II, third edn. VCH, New York

    Google Scholar 

  20. Pankratz LB (1982) Thermodynamic Properties of Elements and Oxides, Bulletin 672. United States Bureau of Mines

Download references

Acknowledgement

The authors are grateful to Dr. K. D. Singh Mudher for providing the X-ray diffraction analysis performed by his group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, A., Prasad, R. & Venugopal, V. Thermodynamic properties of the ternary oxides in the Eu–Ru–O system by using solid-state electrochemical cells. J Solid State Electrochem 11, 291–295 (2007). https://doi.org/10.1007/s10008-006-0106-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0106-2

Keywords

Navigation