Skip to main content
Log in

The electrochemical behaviour of bronze in synthetic seawater

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reports a voltammetric study of bronze in synthetic seawater (SSW). The effects of buffering and deoxygenating were particularly visible in the transpassive region. The breakdown of the anodic passive film on bronze leads to a well-defined activation peak in the transpassive region typical of a nucleation and growth of pits. The breakdown potential of the passivity was shown to vary with the experimental conditions, namely, with buffering and deoxygenating. Buffering has shown to lead to more stable passive films and deoxygenating to higher oxidation currents. Scanning electron microscopy with energy dispersive spectrometer (SEM/EDS) studies of bronze samples with 1-month exposure in non-deoxygenated buffered and non-buffered SSW under open circuit potential have shown significant differences in their morphology: a uniformly cracked surface and a surface showing large and spherical precipitates of about 50 μm uniformly distributed along the surface, respectively, for bronze coupons in buffered (pH 9) and in non-buffered SSW. The EDS technique has identified Cu, O, Cl and Na on the corrosion products of bronze in non-buffered SSW, whilst in buffered media, Sn was also identified. In non-buffered media, open circuit potentials have shown to be all the time less negative than in the buffered media. After 1-month exposure the E OCP of bronze samples in both media seem to converge to −0.131 and −0.155 V vs Ag|AgCl, respectively. This potential can be assigned to the formation of cuprite, Cu2O and nantokite, CuCl. The analysis of the SEM images after the removal of the corrosion products has shown descuprification with higher intensity on the surface from coupons in non-buffered SSW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Robbiola L, Blengino JM, Fiaud C (1998) Corros Sci 40:2083

    Article  CAS  Google Scholar 

  2. Sutter EMM, Millet B, Fiaud C, Linco D (1995) J Electroanal Chem 386:101

    Article  CAS  Google Scholar 

  3. Chialvo MRG, Marchiano SL, Arvia AJ (1984) J Appl Electrochem 14:165

    Article  Google Scholar 

  4. Chialvo MRG, Salvarezza RC, Vazquez Moll D, Arvia AJ (1985) Electrochim Acta 30:501

    Article  Google Scholar 

  5. Modestov AD, Zhou D, Wu Y-P, Notoya T, Schweinsberg DP (1995) Corros Sci 36:193

    Google Scholar 

  6. Fonseca ITE, Marin ACS, Sá AC (1992) Electrochim Acta 37:2541

    Article  CAS  Google Scholar 

  7. Fonseca ITE, Sá AIC (1995) In: Ferreira MGS, Simões AMP (eds) Electrochemical methods in corrosion research. Trans Tech Publications, Materials Science Forum, Switzerland, p 511

    Google Scholar 

  8. Milosev I, Melikos-Hukovic M, Drogowska M, Ménard H, Brossard L (1992) J Electrochem Soc 139:2409

    Article  CAS  Google Scholar 

  9. Fonseca ITE, Domingues IMB (1994) Corr Prot Mat 13:24

    CAS  Google Scholar 

  10. Deslouis C, Tribollet B, Mengoli G, Musiani MM (1988) J Appl Electrochem 18:384

    Article  CAS  Google Scholar 

  11. Duthil J-P, Mankowski G, Giusti G (1996) Corros Sci 38:1839

    Article  CAS  Google Scholar 

  12. Edwards M, Rehring J, Meyer T (1994) Corros Sci 50:366

    Article  CAS  Google Scholar 

  13. Ferreira JP, Rodrigues JA, Fonseca ITE (2004) J Solid State Electrochem 8:260

    Article  CAS  Google Scholar 

  14. Souto RM, Gonzalez S, Salvarezza RC, Arvia AJ (1994) Electrochim Acta 39:2619

    Article  CAS  Google Scholar 

  15. Debiemme-Chouvy, Ammeloot F, Sutter EM (2001) J Applied Surf Sci 174:55

    Article  CAS  Google Scholar 

  16. Ammeloot F, Fiaud C, Sutter EMM (1999) Electrochim Acta 44:2549

    Article  CAS  Google Scholar 

  17. Mabille I, Bertrand A, Sutter EMM, Fiaud C (2003) Corros Sci 45:855

    Article  CAS  Google Scholar 

  18. Souissi IN, Bousseimi L, Khosrof S, Triki E (2004) Mater Corros 55:284

    Article  CAS  Google Scholar 

  19. Mansfeld F, Little B (1992) Electrochim Acta 37:2291

    Article  CAS  Google Scholar 

  20. ISO/DIS 8407 (1986) Metal and alloys-procedures for the removal of the corrosion products from corrosion tests specimens. Geneve, Switzerland

    Google Scholar 

  21. Díaz R, Diéz-Pérez I, Gorostiza P, Sanz F, Morante JR (2003) J Braz Chem Soc 14:523

    Google Scholar 

Download references

Acknowledgements

The authors thank Fundação para Ciência e Tecnologia (FCT) for providing financial support to Centro de Electroquímica e Cinética da Universidade de Lisboa (CECUL) Research Unit POCTI/301/2003 (vertente FEDER) We are grateful to Mrs. Paula Menezes from Laboratório Nacional de Engenharia Civil (LNEC) for all the assistance in the SEM/EDS studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. E. Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, L.M.M., Lemos Salta, M.M. & Fonseca, I.T.E. The electrochemical behaviour of bronze in synthetic seawater. J Solid State Electrochem 11, 259–266 (2007). https://doi.org/10.1007/s10008-006-0102-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0102-6

Keywords

Navigation