Skip to main content
Log in

Electrodeposition of Zn–Ni alloys from sulfate bath

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrodeposition of zinc–nickel (Zn–Ni) alloys from sulfate baths has been studied at different deposition times and H2SO4 and NiSO4 concentrations; various characteristics have been observed during alloy deposition and dissolution. The deposit has been investigated by using scanning electron microscopy (SEM) and X-ray diffractometry. Cyclic voltammetry and galvanostatic measurements during electrodeposition have been conducted. Electrochemical and surface analysis indicate that deposition takes place with the formation of two different structures corresponding to γ-phase and δ-phase zinc–nickel alloys. During anodic part of the cyclic voltammetry of the alloys, a reduction process has been observed, which may be due to hydrogen evolution. With the increase of nickel concentration in the bath, the amount of γ-phase increases, as indicated by the relative increase in the height of the peaks in the X-ray patterns and anodic peaks in the cyclic voltammograms. Also, the corrosion resistance of the zinc–nickel alloy has been improved with an increased concentration of nickel. Under these experimental conditions the electrodeposition of the alloys is of anomalous type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brooks I, Erb U (2001) Scr Mater 44:853

    Article  CAS  Google Scholar 

  2. Bajat JB, Kacarevic-Popovic Z, Miskovic-Stankovic VB, Maksimovic MD (2000) Progr Org Coat 39:127

    Article  CAS  Google Scholar 

  3. Muller C, Sarret M, Benballa M (2002) J Electroanal Chem 519:85

    Article  CAS  Google Scholar 

  4. Beltowska-Lehman E, Ozga P, Swiatek Z, Lupi C (2002) Surf Coat Technol 151:444

    Article  Google Scholar 

  5. Crotty D (1996) Met Finish 94:54

    Article  CAS  Google Scholar 

  6. Roventi G, Fratesi R, della Guardia RA, Barucca G (2000) J Appl Electrochem 30:173

    Article  CAS  Google Scholar 

  7. Muller C, Sarret M, Benballa M (2001) Electrochim Acta 46:2811

    Article  CAS  Google Scholar 

  8. Barcelo G, Garcia J, Sarret M, Muller C, Pregonas J (1994) J Appl Electrochem 24:1249

    Article  CAS  Google Scholar 

  9. Elkhatabi F, Sarret M, Muller C (1996) J Electroanal Chem 404:45

    Article  CAS  Google Scholar 

  10. Elkhatabi F, Barcelo G, Sarret M, Muller C (1996) J Electroanal Chem 419:71

    Article  CAS  Google Scholar 

  11. Fabri Miranda FJ, Barcia OE, Mattos OR, Wiart R (1997) J Electrochem Soc 144:3441

    Article  Google Scholar 

  12. Elkhatabi F, Benballa M, Sarret M, Muller C (1999) Electrochim Acta 44:1645

    Article  CAS  Google Scholar 

  13. Koura N, Suzuki Y, Idemoto Y, Kato T, Matsumoto F (2003) Surf Coat Technol 169:120

    Article  CAS  Google Scholar 

  14. Abou-Krisha M (2005) J Appl Surf Sci 252:1035

    Article  CAS  Google Scholar 

  15. Brenner A (1963) Electrodeposition of alloys, vols 1 and 2. New York, Academic p 194

    Google Scholar 

  16. Ashassi-Sorkhabi H, Hagrah A, Parvini-Ahmadi N, Manzoori (2001) Surf Coat Technol 140:278

    Article  CAS  Google Scholar 

  17. Ohtsuka T, Kuwamura E, Komori A, Uchida T (1995) ISIJ Int 35:892

    CAS  Google Scholar 

  18. Lieder M, Biallozor S (1998) Surf Coat Technol 26:23

    Google Scholar 

  19. Matlosz M (1993) J Electrochem Soc 140:2272

    Article  CAS  Google Scholar 

  20. Keith Sasaki Y, Talbot BJ (2000) J Electrochem Soc 147:189

    Article  Google Scholar 

  21. Grande WC, Talbot JB (1993) J Electrochem Soc 140:675

    Article  CAS  Google Scholar 

  22. Zech N, Poldlaha EJ, Landolt D (1999) J Electrochem Soc 146:2886

    Article  CAS  Google Scholar 

  23. Wu Zhongda, Fedrizzi L, Bonora PL (1996) Surf Coat Technol 85:170

    Article  Google Scholar 

  24. Ramacha TL r, Panikkar SK (1960) Electroplating Met Finish 13:405

    Google Scholar 

  25. Velichenko AB, Portillo J, Alcobe X, Sarret M, Muller C (2000) Electrochim Acta 46:407

    Article  CAS  Google Scholar 

  26. Kalantary MR, Wilcox GD, Gabe DR (1998) Br Corros J 33:197

    CAS  Google Scholar 

  27. Waston SA (March 1988) Nickel development Institute Publications, Report No 13001, Watson SA (April 1991) Proceedings of IMF Conference, Torquay 61–78

  28. Short N, Abibsi A, Dennis JK (1989) Trans IMF 67:73

    CAS  Google Scholar 

  29. Short N, Abibsi A, Dennis JK (1991) Trans IMF 69:145

    Google Scholar 

  30. Lin Y, Selman JR (1993) J Electrochem Soc 123:55

    Google Scholar 

  31. Karwas C, Hepel T (1989) J Electrochem Soc 136:1672

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Abou-Krisha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abou-Krisha, M.M., Assaf, F.H. & Toghan, A.A. Electrodeposition of Zn–Ni alloys from sulfate bath. J Solid State Electrochem 11, 244–252 (2007). https://doi.org/10.1007/s10008-006-0099-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0099-x

Keywords

Navigation