Skip to main content
Log in

Electrochemical rectification at electrode surface modified with poly (acrylic acid) and decane thiol

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Gold surface modified with a two-component system consisting of poly (acrylic acid) (PAA) by electropolymerizing acrylic acid (AA) and decane thiol (DT), further functionalized with ferrocene monocarboxylic acid (FMC) through covalent linkage, was used to demonstrate mediated electron transfer resulting in a unidirectional flow of current. The electrode surface was modified using two different configurations. In Configuration 1 (Config. 1), electrode surface modified with FMC showed rectification behavior when contacted with a solution containing methylene blue (MB). In Configuration 2, redox-active bilayer was constructed using polyvinyl pyrollidone (PVP) and hexaamineruthernium (II) chloride [Ru(NH3)6]2+ showed rectification characteristics. The continuous rectification property of the redox-active bilayer is achieved by releasing the trapped [Ru(NH3)6]3+ in the outer layer using a reductant (ascorbic acid). Spectroelectrochemical measurements were made to study the reduction property of the ascorbic acid. Atomic force microscopic images and impedance measurements were also made on the modified electrode surfaces to explore the compactness of the first layer (PAA and PAA/DT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Collier CP, Wong EW, Belohradsky M, Raymo FJ, Stoddart JF, Kuekes PJ, Williams RS, Heath JR (1999) Science 285:391

    Article  CAS  Google Scholar 

  2. Collier CP, Jeppesen JO, Perking LY, Wong EW, Heath JR, Stoddart JF (2001) J Am Chem Soc 123:12632

    Article  CAS  Google Scholar 

  3. Bumm LA, Arnold JJ, Cygan MT, Dunbar TD, Burgin TP, Jones L II, Allara DL, Tour JM, Weiss PS (1996) Science 271:1705

    Article  CAS  Google Scholar 

  4. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science 286:1550

    Article  CAS  Google Scholar 

  5. Brousseau LC III, Zhao, Shultz DA, Feldheim DL (1998) J Am Chem Soc 120:7645

    Article  CAS  Google Scholar 

  6. Bharathi S, Yegnaraman V, Prabhakar RG (1993) Langmuir 9:1614

    Article  CAS  Google Scholar 

  7. Metzger RM (1993) Acc Chem Res 32:950

    Article  Google Scholar 

  8. Tao Xu, Peterson I, Metzer R (2001) J Phys Chem 105:7280

    Google Scholar 

  9. Aviram A, Ratner M (1974) Chem Phys Lett 29:277

    Article  CAS  Google Scholar 

  10. Martin AS, Sambles JR (1996) Nanotechnology 7

  11. Metzger RM, Chen B, Höpfner U, Lakshmikantham MV, Vuillaume D, Kawai T, Wu X, Tachibana H, Hughes TV, Sakurai H, Baldwin JW, Hosch C, Cava CP, Brehmer L, Ashwell GJ (1997) J Am Chem Soc 119:10455

    Article  CAS  Google Scholar 

  12. Leidner CR, Denisevich P, Willman KW, Murray RW (1984) J Electroanal Chem 164:63

    Article  CAS  Google Scholar 

  13. Pickup PG, Leidner CR, Denisevich P, Murray RW (1984) J Electroanal Chem 16:39

    Google Scholar 

  14. Marks P (1996) New Sci 149:23

    Google Scholar 

  15. Sucheta A, Ackrell BAC, Cochran B, Armstrong FA (1992) Nature 356:361

    Article  CAS  Google Scholar 

  16. Oh SK, Baker LA, Crooks RM (2002) Langmuir 18:6981

    Article  CAS  Google Scholar 

  17. Kittlesen GP, White HW, Wrighton MS (1985) J Am Chem Soc 107:7373

    Article  CAS  Google Scholar 

  18. Smith DK, Lane GA, Wrighton MS (1988) J Phys Chem 92:2616

    Article  CAS  Google Scholar 

  19. Abruna HD, Denisevich P, Willman KW, Umana M, Meyer TT, Murray RW (1981) J Am Chem Soc 103:1

    Article  CAS  Google Scholar 

  20. Ashwell GJ, Gandolfo DS, Hamilton R (2002) J Mater Chem 12:416

    Article  CAS  Google Scholar 

  21. Sabatani E, Rubinstein I, Maoz R, Sagiv J (1987) J Electroanal Chem 219:365

    Article  CAS  Google Scholar 

  22. Finklea HO, Bard AJ, Rubinstein I (1996) In: Electroanalytical chemistry. Eds. Marcel Dekker, New York 19:109

  23. Rong D, Hong HG, Kim YI, Krueger JS, Mayer JE, Mallouk TE (1990) Coord Chem Rev 97:237

    Article  CAS  Google Scholar 

  24. Walter DG, Campbell DJ, Mirkin CA (1999) J Phys Chem B 103:402

    Article  CAS  Google Scholar 

  25. Berchamans S, Ramalechume C, Lakshmi V, Yegnaraman V (2002) J Mater Chem 12:2538

    Article  Google Scholar 

  26. Berchamans S, Usha S, Ramalechume C, Yegnaraman V (2005) J Solidstate Electrochem 9:595

    Article  Google Scholar 

  27. Ramalechume C, Berchamans S, Yegnaraman V, Mandal AB (2005) J Electroanal Chem 580:122

    Article  CAS  Google Scholar 

  28. (a) Mandal AB, Nair BU (1991) J Chem Soc Faraday Trans 87:133 (b) Mandal AB, Nair BU (1991) J Phys Chem 95:9008 (c) Mandal AB (1993) Langmuir 9:1932 (d) Mandal AB, Geetha B (1995) Langmuir 11:1464 (e) Mandal AB, Geetha B (1997) Langmuir 13:2410

  29. Katz E, Lacey AL, Fierro JLG, Palacios JM, Fernandez VM (1993) J Electroanal Chem 358:247

    Article  CAS  Google Scholar 

  30. Lin R, Onikubo T, Nagai K, Kaneko M (1993) J Electroanal Chem 348:189

    Article  CAS  Google Scholar 

  31. Diao P, Jiang D, Cui X, Gu D, Tong R, Zhong B (1999) J Electroanal Chem 464:61

    Article  CAS  Google Scholar 

  32. Mirkin CA, Ratner MA (1992) Annu Rev Phys Chem 43:719

    Article  CAS  Google Scholar 

  33. Ashwell GJ, Gandolfo DS (2001) J Mater Chem 11:246

    Article  CAS  Google Scholar 

  34. Allemen KS, Weber K, Creager SE (1996) J Phys Chem 100:17050

    Article  Google Scholar 

  35. Meyer TM, Taube H (1968) Inorg Chem 7:2369

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work described in this paper forms a part of the Ph.D. program of Chidambaram Ramalechume, and she is thankful to the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for financial support in the form of a senior research fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asit Baran Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramalechume, C., Yegnaraman, V. & Mandal, A.B. Electrochemical rectification at electrode surface modified with poly (acrylic acid) and decane thiol. J Solid State Electrochem 10, 499–505 (2006). https://doi.org/10.1007/s10008-006-0097-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0097-z

Keywords

Navigation