Skip to main content
Log in

Synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode material for Li-ion batteries by the polymer-pyrolysis method

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A submicron LiNi0.5Mn1.5O4 cathode was synthesized via the pyrolysis of polyacrylate salts as precursor polymerized by reaction of the metal salts with acrylate acid. The structure and morphology of the resulting compound was characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results reveal that the prepared LiNi0.5Mn1.5O4 cathode material has a pure cubic spinel structure \(({\rm Fd}\ifmmode\expandafter\bar\else\expandafter\=\fi{3}\,{\rm m})\) and submicron-sized morphology even if calcined at 900 °C and quenched to room temperature. The LiNi0.5Mn1.5O4 electrodes exhibited promising high-rate characteristics and delivered stable discharge capacity (90 mAh/g) with excellent retention capacity at the current density of 50 mA/g between 3.5 and 4.9 V. The capacity of the LiNi0.5Mn1.5O4 electrodes remains stable even after 30 cycles at low or high current density. This polymer-pyrolysis method is simple and particularly suitable for preparation of the spinel LiNi0.5Mn1.5O4 cathode material compared to the conventional synthesis techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amine K, Tukamoto H, Yasuda H, Fujita Y (1996) J Electrochem Soc 143:1607

    Article  CAS  Google Scholar 

  2. Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn JR (1997) J Electrochem Soc 144:205

    Article  CAS  Google Scholar 

  3. Ohzuku T, Takeda S, Iwanaga M (1999) J Power Sources 81:90

    Article  Google Scholar 

  4. Lee YS, Todorov YM, Konishi T, Yoshio M (2001) ITE Lett 1:1

    Article  Google Scholar 

  5. Sigala C, Guyomard D, Verbaere A, Piffard Y, Toumoux M (1995) Solid State Ionics 81:167

    Article  CAS  Google Scholar 

  6. Gao Y, Myrtle K, Zhang M, Reimers JN, Dahn JR (1996) Phys Rev B 54:16670

    Article  CAS  Google Scholar 

  7. Ohzuku T, Ariyoshi K, Takeda S, Sakai Y (2001) Electrochim Acta 46:2327

    Article  CAS  Google Scholar 

  8. Ein-Eli Y, Vaughey JT, Thackeray MM, Mukerjee S, Yang XQ, McBreen J (1999) J Electrochem Soc 146:908

    Article  CAS  Google Scholar 

  9. Kawai H, Nagata M, Tukamoto H, West AR (1999) J Power Sources 81–82:67

    Article  Google Scholar 

  10. Shigemura H, Sakaebe H, Kageyama H, Kobayashi H, West AR, Kanno R, Morimoto S, Nasu S, Tabuchi M (2001) J Electrochem Soc 148:A730

    Article  CAS  Google Scholar 

  11. West AR, Kawai H, Kageyama H, Tabuchi M, Nagata M, Tukamoto H (2001) J Mater Chem 11:1662

    Article  CAS  Google Scholar 

  12. Guohua L, Ikuta H, Uchida T, Wakihara M (1996) J Electrochem Soc 143:178

    Article  Google Scholar 

  13. Sun YK, Lee YS, Yoshio M, Amine K (2002) Electrochem Solid-State Lett 5:A99

    Article  CAS  Google Scholar 

  14. Alcantara R, Jaraba M, Lavela P, Tirado JL (2002) Electrochem Acta 47:1829

    Article  CAS  Google Scholar 

  15. Amine K, Tukamoto H, Yasuda H, Fujita Y (1997) J Power Sources 68:604

    Article  CAS  Google Scholar 

  16. Yu LH, Yang HX, Ai XP, Cao YL (2005) J Phys Chem B 109:1148

    Article  CAS  Google Scholar 

  17. Kim JH, Myung ST, Sun YK (2004) Electrochim Acta 49:219

    Article  CAS  Google Scholar 

  18. Lee YS, Sun YK, Ota S, Miyashita T, Yoshio M (2002) Electrochem Commun 4:989

    Article  CAS  Google Scholar 

  19. Ohzuku T, Kitagawa M, Hirai T (1990) J Electrochem Soc 137:769

    Article  CAS  Google Scholar 

  20. Caballero A, Cruz M, Hernan L, Melero M, Morales J, Castellon ER (2005) J Electrochem Soc 152 (3):A552

    Article  CAS  Google Scholar 

  21. Markovsky B, Talyossef Y, Salitra G, Aurbach D, Kim HJ, Choi S (2004) Electrochem Commun 6:821

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the financial support by the 973 Program, China (Grant No. 2002CB211800) and the technical assistance in TEM work by the Center for Electron Microscopy, Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliang Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Cao, Y., Yang, H. et al. Synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode material for Li-ion batteries by the polymer-pyrolysis method. J Solid State Electrochem 10, 283–287 (2006). https://doi.org/10.1007/s10008-005-0695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0695-1

Keywords

Navigation