Skip to main content
Log in

(La0.8Sr0.2)0.9MnO3–Gd0.2Ce0.8O1.9 composite cathodes prepared from (Gd, Ce)(NO3) x -modified (La0.8Sr0.2)0.9MnO3 for intermediate-temperature solid oxide fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Development of high performance cathodes with low polarization resistance is critical to the success of solid oxide fuel cell (SOFC) development and commercialization. In this paper, (La0.8Sr0.2)0.9MnO3 (LSM)–Gd0.2Ce0.8O1.9(GDC) composite powder (LSM ~70 wt%, GDC ~30 wt%) was prepared through modification of LSM powder by Gd0.2Ce0.8(NO3) x solution impregnation, followed by calcination. The electrode polarization resistance of the LSM–GDC cathode prepared from the composite powder was ~0.60 Ω cm2 at 750 °C, which is ~13 times lower than that of pure LSM cathode (~8.19 Ω cm2 at 750 °C) on YSZ electrolyte substrates. The electrode polarization resistance of the LSM–GDC composite cathode at 700 °C under 500 mA/cm2 was ~0.42 Ω cm2, which is close to that of pure LSM cathode at 850 °C. Gd0.2Ce0.8(NO3) x solution impregnation modification not only inhibits the growth of LSM grains during sintering but also increases the triple-phase-boundary (TPB) area through introducing ionic conducting phase (Gd,Ce)O2-δ, leading to the significant reduction of electrode polarization resistance of LSM cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Souza SD, Visco SJ, Jonghe LCD (1997) Solid State Ionics 98:57

    Article  Google Scholar 

  2. Kim JW, Virkar AV, Fung KZ, Mehta K, Singhal SC (1999) J Electrochem Soc 146:69

    Article  CAS  Google Scholar 

  3. Leng YJ, Chan SH, Khor KA, Jiang SP, Cheang P (2003) J Power Sources 117:26

    Article  CAS  Google Scholar 

  4. Maric R, Ohara S, Fukui T, Yoshida H, Nishimura M, Inagaki T, Miura K (1999) J Electrochem Soc 146:2006

    Article  CAS  Google Scholar 

  5. Ishihara T, Shibayama T, Honda M, Nishiguchi H, Takita Y (2000) J Electrochem Soc 147:1332

    Article  CAS  Google Scholar 

  6. Wang K, Wan JH, Goodenough JB (2001) J Electrochem Soc 148:A788

    Article  Google Scholar 

  7. Yan JW, Lu LG, Jiang Y, Dong YL, Yu CL, Li WZ (2002) J Electrochem Soc 149:A1132

    Article  CAS  Google Scholar 

  8. Doshi R, Richards VL, Carter JD, Wang X, Krumpelt M (1999) J Electrochem Soc 146:1273

    Article  CAS  Google Scholar 

  9. Xia C, Chen F, Liu M (2001) Electrochem Solid State Lett 4:A52

    Article  CAS  Google Scholar 

  10. Xia C, Liu M (2001) Solid State Ionics 144:249

    Article  CAS  Google Scholar 

  11. Leng YJ, Chan SH, Jiang SP, Khor KA (2004) Solid State Ionics 170:9

    Article  CAS  Google Scholar 

  12. Minh NQ (1993) J Am Ceram Soc 76:563

    Article  CAS  Google Scholar 

  13. Steele BCH, Bae JM (1998) Solid State Ionics 106:255

    Article  CAS  Google Scholar 

  14. Dusastre V, Kilner JA (1999) Solid State Ionics 126:163

    Article  CAS  Google Scholar 

  15. Kim JD, Kim GD, Moon JW, Park YI, Lee WH, Kobayashi K, Nagai M, Kim CE (2001) Solid State Ionics 143:379

    Article  CAS  Google Scholar 

  16. Jørgensen MJ, Primdahl S, Bagger C, Mogensen M (2001) Solid State Ionics 139:1

    Article  Google Scholar 

  17. Murray EP, Tsai T, Barnett SA (1998) Solid State Ionics 110:235

    Article  CAS  Google Scholar 

  18. Murray EP, Barnett SA (2001) Solid State Ionics 143:265

    Article  Google Scholar 

  19. Xia C, Zhang Y, Liu M (2003) Electrochem Solid State Lett 6:A290

    Article  CAS  Google Scholar 

  20. Jiang SP, Leng YJ, Chan SH, Khor KA (2003) Electrochem Solid State Lett 6:A67

    Article  CAS  Google Scholar 

  21. Chen XJ, Chan SH, Khor KA (2004) Electrochim Acta 49:1851

    Article  CAS  Google Scholar 

  22. Jiang SP, Love JG (2001) Solid State Ionics 138:183

    Article  CAS  Google Scholar 

  23. Jiang SP, Love JG (2003) Solid State Ionics 158:45

    Article  CAS  Google Scholar 

  24. Herle JV, Ihringer R, Cavieres RV, Constantin L, Bucheli O (2001) J Euro Ceram Sci 21:1855

    Article  Google Scholar 

  25. Larrain D, Herle JV, Maréchal F, Favrat D (2003) J Power Sources 118:367

    Article  CAS  Google Scholar 

  26. Jiang Y, Wang SZ, Zhang YH, Yan JW, Li WZ (1998) J Electrochem Soc 145:373

    Article  CAS  Google Scholar 

  27. Lee HY, Cho WS, Oh SM, Wiemhöfer HD, Göpel W (1995) J Electrochem Soc 142:2659

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Leng thanks the Agency for Science, Technology & Research (A*Star), Singapore for the research fellowship (Contract P0120164).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. J. Leng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leng, Y.J., Chan, S.H., Khor, K.A. et al. (La0.8Sr0.2)0.9MnO3–Gd0.2Ce0.8O1.9 composite cathodes prepared from (Gd, Ce)(NO3) x -modified (La0.8Sr0.2)0.9MnO3 for intermediate-temperature solid oxide fuel cells. J Solid State Electrochem 10, 339–347 (2006). https://doi.org/10.1007/s10008-005-0677-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0677-3

Keywords

Navigation