Skip to main content
Log in

Electropolymerization of trans-[RuCl2(vpy)4] complex—EQCM and Raman studies

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electropolymerization of trans-[RuCl2(vpy)4] (vpy=4-vinylpyridine) on Au or Pt electrodes was studied by cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM) technique, and Raman spectroscopy. Cyclic voltammetry of the monomer at a microelectrode shows the typical Ru(III/II) and Ru(IV/III) waves, together with the vinyl reduction waves at −1.5 and −2.45 V and adsorption wave at −0.8 V. Electrodeposition on EQCM technique performed under potential cycling between −0.9 and −2.0 V revealed that the polymerization proceeded well in advance of the vinyl reduction waves. At potentials more positive than −0.9 V, soluble oligomers were deposited irreversibly on the electrode during the oxidative sweep. The film also showed reversible mass changes due to the oxidation and accompanying ingress of charge-balancing anions and solvent into the film. In contrast, potentiostatic growth of the polymer at −1.6 V was slower because the oligomeric material was lost completely from the electrode. Unreacted vinyl groups were detected by in situ Raman spectroscopy for films grown at −0.7, −0.9, and −1.6 V but were absent when the polymerization was carried out at −2.9 V vs Ag/Ag+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Paula MMS, Franco CV (1996) J Coord Chem 40:71

    CAS  Google Scholar 

  2. Paula MMS, Franco CV, Prates PB, Moraes Jr VN (1997) Synth Met 90:81

    Article  Google Scholar 

  3. Paula MMS, Franco CV, Mocellin F, Moraes Jr VN (1998) J Mater Chem 8:2049

    Article  CAS  Google Scholar 

  4. Calvert JM, Schmehl RH, Sullivan B.P, Facci JS, Meyer TJ, Murray RW (1983) Inorg Chem 22:2151

    Article  CAS  Google Scholar 

  5. Denesevich P, Abruña HD, Leidner CR., Meyer TJ, Murray RW (1982) Inorg Chem 21:2153

    Article  Google Scholar 

  6. Bandeira MCE, Prochnow FD, Costa I, Franco CV (2001) Key Eng Mater 189–191:673

    Article  Google Scholar 

  7. Bandeira MCE, Prochnow FD, Costa I, Franco CV (1999) J Corros Sci Eng 2:paper 4. http://www2.umist.ac.uk/corrosion/JCSE/

  8. Bandeira MCE, Prochnow FD, Costa I, Franco CV (1999) Brazilian Patent MU 7900518-7, Brazil

  9. Sobral AVC, Ristow Jr W, Domenech SC, Franco CV (2000) J Solid State Electrochem 4:417

    Article  Google Scholar 

  10. Foster RJ, Vos JG (1991) J Chem Soc Faraday Trans 87:1863

    Article  Google Scholar 

  11. Doherty AP, Foster RJ, Smyth MR, Vos JG (1992) Anal Chem 64:572

    Article  CAS  Google Scholar 

  12. Doherty AP, Vos JG (1992) J Chem Soc Faraday Trans 88:2903

    Article  CAS  Google Scholar 

  13. Doherty AP, Stanley MA, Leech D, Vos JG (1996) Anal Chim Acta 319:111

    Article  CAS  Google Scholar 

  14. Araki K, Angnes L, Azevedo CMN, Toma HE (1995) J Electroanal Chem 397:205

    Article  CAS  Google Scholar 

  15. Gorski W, Aspinwall CA, Lakey JRT, Kennedy RT (1997) J Electroanal Chem 425:191

    Article  CAS  Google Scholar 

  16. Azevedo CMN, Araki K, Toma HE, Angnes L (1999) Anal Chim Acta 387:175

    Article  CAS  Google Scholar 

  17. Mccarley RL, Thomas RE, Irene EA, Murray RW (1990) J Electrochem Soc 137:1485

    Article  CAS  Google Scholar 

  18. Brown NMD, You HX, Forster RJ, Vos JG (1991) J Mater Chem 1:517

    Article  CAS  Google Scholar 

  19. Pasa-Creczynski TB, Bonetti VR, Beirith A, Ckless K et al (2001) J Inorg Biochem 86:587

    Article  PubMed  Google Scholar 

  20. Elliott MC, Baldy JC, Nuwaysir LM, Wilkins CL (1990) Inorg Chem 29:389

    Article  CAS  Google Scholar 

  21. Bandeira MCE (2001) Ph.D. thesis. Materials Science and Engineering, UFSC Florianópolis, SC-Brazil

  22. Paula MMS (1999) Ph.D. thesis. Materials Science and Engineering, UFSC Florianópolis, SC-Brazil

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al (1998) Gaussian, Wallingford, CT

    Google Scholar 

  24. Kojima T, Amano T, Ishii Y, Ohba M, Okaue Y, Matsuda Y (1998) Inorg Chem 37:4076

    Article  PubMed  CAS  Google Scholar 

  25. Holligan BM, Jeffery JC, Norgett MK, Schatz E, Ward MD (1992) J Chem Soc Dalton Trans 23:3345

    Article  Google Scholar 

  26. Bard AJ, Faulkner LR (2001) Electrochemical methods—fundamentals and applications, 2nd edn. Wiley, NY, USA, p 580

    Google Scholar 

  27. Kvarnström C, Bilger R, Ivaska A, Heinze J (1998) Electrochim Acta 43:355

    Article  Google Scholar 

  28. Sauerbrey H (1959) Z Phys 155:227

    Google Scholar 

  29. Baker CK, Reynolds JR (1988) J Electroanal Chem 307:251

    Google Scholar 

  30. Myllynen S, Wasberg M, Eskelinen E, Haukka M, Pakkanen TT (2001) J Electroanal Chem 506:115

    Article  CAS  Google Scholar 

  31. Takada K, Storrier GD, Pariente F, Abrunã H (1998) J Phys Chem B 102:1387

    Article  CAS  Google Scholar 

  32. Storrier GD, Takad K, Abrunã H (1999) Inorg Chem 38:559

    Article  PubMed  CAS  Google Scholar 

  33. Varela H, Malta M, Torresi RM (2000) Quím Nova 23:664

    CAS  Google Scholar 

  34. (a) Dini D, Decker F, Zotti G (1998) Electrochem Sol State Lett 1:217 (b) Skompska M (2000) Electrochim Acta 45:3841 (c) Zhao ZS, Pickup PG (1994) J Chem Soc Faraday Trans 90:3097

    Article  CAS  Google Scholar 

  35. Snyder SR, White HS (1995) J Phys Chem 99:5626

    Article  CAS  Google Scholar 

  36. Bandeira MCE, Prochnow FD, Noda LK, Gonçalves NS (2004) J Solid State Electrochem 8(4):244

    Article  CAS  Google Scholar 

  37. Sala O, Gonçalves NS, Noda LK (2001) J Mol Struct 565–566:411

    Article  Google Scholar 

  38. Paula MMS, Konzen M, Seifriz I, Gonçalves NS, Spoganickz B, Franco CV (1999) J Bioinorg Chem 76(3–4):153

    Google Scholar 

  39. Topacli A, Bayari S (2001) J Mol Struct 595:93

    Article  CAS  Google Scholar 

  40. Bayari S, Yurdakul S (2000) Spectrosc Lett 33(4):475

    Article  CAS  Google Scholar 

  41. Noda LK, Sala O (2000) Spectrochim Acta A 56:145

    Article  Google Scholar 

  42. Liu HL, Yoon S, Cooper SL, Cao G, Crow JE (1999) Phys Rev B Condens Matter 60(10):R6980

    CAS  Google Scholar 

  43. Santos PS, Gonçalves NS (2001) J Mol Struct 570(1–3):75

    Article  CAS  Google Scholar 

  44. Paulson SC, Elliott CM (1996) Anal Chem 68:1711

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Laboratório de Espectroscopia Molecular (LEM-IQUSP) for the use of the Raman equipment (Renishaw Raman System 3000). LKN acknowledges CAPES/ProDoc for the grant, NSG acknowledges CNPq Edital Universal 01/2002, and MCEB acknowledges CAPES-Brazilian Research Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merlin C. E. Bandeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandeira, M.C.E., Crayston, J.A., Gonçalves, N.S. et al. Electropolymerization of trans-[RuCl2(vpy)4] complex—EQCM and Raman studies. J Solid State Electrochem 11, 231–239 (2007). https://doi.org/10.1007/s10008-005-0093-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0093-8

Keywords

Navigation