Skip to main content
Log in

A review of anomalous diffusion phenomena at fractal interface for diffusion-controlled and non-diffusion-controlled transfer processes

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This article reviewed anomalous diffusion phenomena coupled with facile and sluggish charge-transfer reactions at fractal interface. Firstly, the generalised diffusion equation (GDE) involving a fractional derivative which describes diffusion towards and from fractal interface was briefly introduced. And then, anomalous diffusion coupled with facile charge-transfer reaction at fractal interface, i.e., diffusion-controlled transfer process across fractal interface, was mathematically examined by the generalised Cottrell, Sand, Randles-Sevcik and Warburg equations theoretically derived from the analytical solutions to the GDE under the semi-infinite boundary condition. Finally, in order to provide a guideline in analysing anomalous diffusion coupled with sluggish charge-transfer reaction at fractal interface, i.e., non-diffusion-controlled transfer process across fractal interface, this review covered the recent researches into the effect of surface roughness on non-diffusion-controlled transfer process within the intercalation electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

BC:

Boundary condition

CPE:

Constant phase element

CTRW:

Continuous time random walk

EIS:

Electrochemical impedance spectroscopy

FDE:

Fractional diffusion equation

GDE:

Generalised diffusion equation

IC:

Initial condition

LSV:

Linear sweep voltammogram

MC:

Monte Carlo

MCS:

Monte Carlo step

MH x :

Metal hydride

MSD:

Mean squared displacement

Ox:

Oxidised species

PCT:

Potentiostatic current transient

Red:

Reduced species

TEISI:

Transfert d’Energie sur Interface à Similitude Interne

References

  1. Richardson LF (1926) Proc R Soc Lond A 110:709

    Google Scholar 

  2. Batchelor GK (1950) Q J Royal Meteorol Soc 76:133

    Google Scholar 

  3. Shlesinger MF, West BJ, Klafter J (1987) Phys Rev Lett 58:1100

    Article  PubMed  Google Scholar 

  4. Sokolov IM, Blumen A, Klafter J (1999) Europhys Lett 47:152

    Article  CAS  Google Scholar 

  5. Scher H, Montroll EW (1973) Phys Rev B 7:4491

    Article  CAS  Google Scholar 

  6. Scher H, Montroll EW (1975) Phys Rev B 12:2455

    Article  CAS  Google Scholar 

  7. Pfister G, Scher H (1977) Phys Rev B 15:2062

    Article  CAS  Google Scholar 

  8. Pfister G, Scher H (1978) Adv Phys 27:747

    Article  CAS  Google Scholar 

  9. Zumofen G, Blumen A, Klafter J (1990) Phys Rev A 41:4558

    Article  PubMed  Google Scholar 

  10. Gu Q, Schiff EA, Grebner S, Schwartz R (1996) Phys Rev Lett 76:3196

    Article  PubMed  CAS  Google Scholar 

  11. Blom PWM, Vissenberg MCJM (1998) Phys Rev Lett 80:3819

    Article  CAS  Google Scholar 

  12. Cardoso O, Tabeling P (1988) Europhys Lett 7:225

    Google Scholar 

  13. Amblard F, Maggs AC, Yurke B, Pargellis AN, Leibler S (1996) Phys Rev Lett 77:4470

    Article  PubMed  CAS  Google Scholar 

  14. Barkai E, Klafter J (1998) Phys Rev Lett 81:1134

    Article  CAS  Google Scholar 

  15. Balescu R (1995) Phys Rev E 51:4807

    Article  CAS  Google Scholar 

  16. Luedtke WD, Landman U (1999) Phys Rev Lett 82:3835

    Article  CAS  Google Scholar 

  17. Bychuk OV, O’Shaugnessy B (1994) Phys Rev Lett 74:1795

    Article  Google Scholar 

  18. Stapf S, Kimmich R, Seitter RO (1995) Phys Rev Lett 75:2855

    Article  PubMed  CAS  Google Scholar 

  19. Bodurka J, Seitter RO, Kimmich R, Gutsze A (1997) J Chem Phys 107:5621

    Article  CAS  Google Scholar 

  20. Gefen Y, Aharony A, Alexander S (1983) Phys Rev Lett 50:77

    Article  Google Scholar 

  21. O’Shaughnessy B, Procaccia I (1985) Phys Rev Lett 54:455

    Article  PubMed  CAS  Google Scholar 

  22. Harris AB, Aharony A (1987) Europhys Lett 4:1355

    CAS  Google Scholar 

  23. Giona M, Roman HE (1992) J Phys A Math Gen 25:2093

    Article  Google Scholar 

  24. Giona M, Roman HE (1992) Physica A 185:87

    Article  Google Scholar 

  25. Roman HE, Giona M (1992) J Phys A Math Gen 25:2107

    Article  Google Scholar 

  26. Metzler R, Glöckle WG, Nonnenmacher TF (1994) Physica A 211:13

    Article  Google Scholar 

  27. Vassilicos JC (1995) Phys Rev E 52:R5753

    Article  CAS  Google Scholar 

  28. Metzler R, Nonnenmacher TF (1997) J Phys A Math Gen 30:1089

    Article  CAS  Google Scholar 

  29. Le Mehaute A, Crepy G (1983) Solid State Ion 9–10:17

    Article  Google Scholar 

  30. Le Mehaute A (1984) J Stat Phys 36:665

    Article  Google Scholar 

  31. Nyikos L, Pajkossy T (1986) Electrochim Acta 31:1347

    Article  CAS  Google Scholar 

  32. Nigmatullin RR (1986) Phys Status Solidi B 133:425

    CAS  Google Scholar 

  33. Pajkossy T, Nyikos L (1989) Electrochim Acta 34:171

    Article  CAS  Google Scholar 

  34. Pajkossy T, Nyikos L (1989) Electrochim Acta 34:181

    Article  CAS  Google Scholar 

  35. Nyikos L, Pajkossy T, Borosy AP, Martemyanov SA (1990) Electrochim Acta 35:1423

    Article  CAS  Google Scholar 

  36. Borosy AP, Nyikos L, Pajkossy T (1991) Electrochim Acta 36:163

    Article  CAS  Google Scholar 

  37. Pajkossy T, Borosy AP, Imre A, Martemyanov SA, Nagy G, Schiller R, Nyikos L (1994) J Electroanal Chem 366:69

    Article  CAS  Google Scholar 

  38. Dassas Y, Duby P (1995) J Electrochem Soc 142:4175

    Article  CAS  Google Scholar 

  39. Montroll EW, Weiss GH (1965) J Math Phys 6:167

    Google Scholar 

  40. Metzler R, Klafter J (2000) Phys Rep 339:1

    Article  CAS  Google Scholar 

  41. West BJ, Grigolini P (2000) Fractional differences, derivatives and fractal time series. In: Hilfer R (ed) Applications of fractional calculus in physics. World Scientific, Singapore, pp 171–201

    Google Scholar 

  42. Lutz E (2001) Phys Rev Lett 86:2208

    Article  PubMed  CAS  Google Scholar 

  43. Ocon P, Herrasti P, Vázquez L, Salvarezza RC, Vara JM, Arvia AJ (1991) J Electroanal Chem 319:101

    Article  CAS  Google Scholar 

  44. Pajkossy T (1991) J Electroanal Chem 300:1

    Article  CAS  Google Scholar 

  45. Imre A, Pajkossy T, Nyikos L (1992) Acta Metall Mater 40:1819

    Article  CAS  Google Scholar 

  46. Go JY, Pyun SI (2004) Electrochim Acta 49:2551

    Article  CAS  Google Scholar 

  47. Strømme M, Niklasson GA, Granqvist CG (1995) Phys Rev B 52:14192

    Article  Google Scholar 

  48. Strømme M, Niklasson GA, Granqvist CG (1995) Solid State Commun 96:151

    Article  Google Scholar 

  49. Go JY, Pyun SI, Hahn YD (2003) J Electroanal Chem 549:49

    Article  CAS  Google Scholar 

  50. Sapoval B (1987) Solid State Ion 23:253

    Article  Google Scholar 

  51. Hill RM, Dissado LA (1988) Solid State Ion 26:295

    Article  Google Scholar 

  52. Nyikos L, Pajkossy T (1990) Electrochim Acta 35:1567

    Article  CAS  Google Scholar 

  53. Wyss W (1986) J Math Phys 27:2782

    Article  Google Scholar 

  54. Schneider WR, Wyss W (1989) J Math Phys 30:134

    Article  Google Scholar 

  55. Mainardi F (1996) Appl Math Lett 9:23

    Article  Google Scholar 

  56. Záliš S, Fanelli N, Pospíšil L (1991) J Electroanal Chem 314:1

    Article  Google Scholar 

  57. Záliš S, Pospíšil L, Fanelli N (1993) J Electroanal Chem 349:443

    Article  Google Scholar 

  58. Pospíšil L, Záliš S, Fanelli N (1995) J Chem Educ 72:997

    Article  Google Scholar 

  59. Zuo X, Xu C, Xin H (1997) Electrochim Acta 42:2555

    Article  CAS  Google Scholar 

  60. Shin HC, Pyun SI, Go JY (2002) J Electroanal Chem 531:101

    Article  CAS  Google Scholar 

  61. Lee JW, Pyun SI (2005) Electrochim Acta 50:1947

    Article  CAS  Google Scholar 

  62. de Levie R, Vogt A (1990) J Electroanal Chem 281:23

    Article  Google Scholar 

  63. Kant R, Rangarajan SK (1995) J Electroanal Chem 396:285

    Article  CAS  Google Scholar 

  64. Go JY, Pyun SI (2005) Electrochim Acta 50:3479

    Article  CAS  Google Scholar 

  65. Go JY, Pyun SI (2005) Electrochim Acta (in press)

  66. Lee JW, Pyun SI (2005) Electrochim Acta (in press)

  67. Han JN, Seo M, Pyun SI (2001) J Electroanal Chem 499:152

    Article  CAS  Google Scholar 

  68. Han JN, Lee JW, Seo M, Pyun SI (2001) J Electronal Chem 506:1

    Article  CAS  Google Scholar 

  69. Pyun SI, Lee JW, Han JN (2002) J New Mater Electrochem Syst 5:243

    CAS  Google Scholar 

  70. Lee SJ, Pyun SI, Lee JW (2005) Electrochim Acta 50:1121

    Article  CAS  Google Scholar 

  71. Lee JW, Pyun SI (2005) Electrochim Acta 50:1777

    Article  CAS  Google Scholar 

  72. Shin HC, Pyun SI (1999) Electrochim Acta 45:489

    Article  CAS  Google Scholar 

  73. Go JY, Pyun SI, Shin HC (2002) J Electroanal Chem 527:93

    Article  CAS  Google Scholar 

  74. Shin HC, Pyun SI (2003) Mechanisms of lithium transport through transition metal oxides and carbonaceous materials. In: Vayenas CG, Conway BE, White RE (eds) Modern aspects of electrochemistry, no. 36. Plenum, New York, pp 255–301

    Google Scholar 

  75. Lee JW, Pyun SI (2004) Electrochim Acta 49:753

    Article  CAS  Google Scholar 

  76. Podlubny I (1999) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic, San Diego

    Google Scholar 

  77. Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  78. Ho C, Raistrick ID, Huggins RA (1980) J Electrochem Soc 127:343

    Article  CAS  Google Scholar 

  79. Jacobsen T, West K (1995) Electrochim Acta 40:255

    Article  CAS  Google Scholar 

  80. Ding S, Petuskey WT (1998) Solid State Ion 109:101

    Article  CAS  Google Scholar 

  81. Diard JP, Le Gorrec B, Montella C (1999) J Electroanal Chem 471:126

    Article  CAS  Google Scholar 

  82. Bisquert J, Compte A (2001) J Electroanal Chem 499:112

    Article  CAS  Google Scholar 

  83. Lee JW, Pyun SI (2005) Z Met Kd 96:2

    Google Scholar 

  84. Falconer K (1990) Fractal geometry: mathematical foundations and applications. Wiley, Chichester

    Google Scholar 

  85. Go JY, Pyun SI (2005) Fractal approach to rough surfaces and interfaces in electrochemistry. In: Vayenas CG, Conway BE, White RE (eds) Modern aspects of electrochemistry, no. 39. Plenum, New York, pp 167–230

    Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Center for Advanced Materials Processing (CAMP) of the 21st Century Frontier R&D Program funded by the Ministry of Commerce, Industry and Energy (MOCIE), Republic of Korea. Furthermore, this work was partly supported by the Brain Korea 21 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Il Pyun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Go, JY., Pyun, SI. A review of anomalous diffusion phenomena at fractal interface for diffusion-controlled and non-diffusion-controlled transfer processes. J Solid State Electrochem 11, 323–334 (2007). https://doi.org/10.1007/s10008-005-0084-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0084-9

Keywords

Navigation