Skip to main content
Log in

Electrochemical and magnetic characterization of LiFePO4 and Li0.95Mg0.05FePO4 cathode materials

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A series of lithium iron phosphates was synthesized via the sol–gel route. Iron phosphides, which are electronic conductors, were formed when sintered at 850°C. Magnetic susceptibility measurements on the samples show antiferromagnetic behaviour with T N=50±2 K for LiFePO4 and Li0.95Mg0.05PO4 sintered at temperatures below 850°C. The LiFePO4 and Li0.95Mg0.05FePO4 cathodes show a stable electrochemical capacity in the range of 150–160 mA h/g on cycling. The cyclability deteriorates with increasing sample sintering temperature due to the increased crystal size and impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 414:359

    Article  CAS  Google Scholar 

  2. Walkihara M (2001) Mater Sci Eng R 33:109

    Article  Google Scholar 

  3. Tirado JL (2003) Mater Sci Eng R 40:103

    Article  Google Scholar 

  4. Whittingham MS (2004) Chem Rev 104:4271

    Article  CAS  Google Scholar 

  5. Armstrong AR, Bruce PG (1996) Nature 381:499

    Article  CAS  Google Scholar 

  6. Ammundsen B, Desilvestro J, Groutso T, Hassell D, Metson JB, Regan E, Steiner R, Pickering PJ (2000) J Electrochem Soc 147:4078

    Article  CAS  Google Scholar 

  7. Thackeray MM (1995) J Electrochem Soc 142:2558

    Article  CAS  Google Scholar 

  8. Li GH, Ikuta H, Uchida T, Wakihara M (1996) J Electrochem Soc 143:178

    Article  Google Scholar 

  9. Saadoune I, Delmas C (1996) J Mater Chem 6:193

    Article  CAS  Google Scholar 

  10. Armstrong AR, Paterson AJ, Robertson AD, Bruce PG (2002) Chem Mater 14:710

    Article  CAS  Google Scholar 

  11. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  12. Padhi AK, Nanjundaswamy KS, Masquelier C, Goodenough JB (1997) J Electrochem Soc 144:1609

    Article  CAS  Google Scholar 

  13. Amine K, Yasuda H, Yamachi M (2000) Electrochem Solid State Lett 3:178

    Article  CAS  Google Scholar 

  14. Huang H, Yin SC, Kerr T, Taylor N, Nazar LF (2002) Adv Mater 14:1525

    Article  CAS  Google Scholar 

  15. Delacourt C, Poizot P, Morcrette M, Tarascon JM, Masquelier C (2004) Chem Mater 16:93

    Article  CAS  Google Scholar 

  16. Huang H, Yin SC, Nazar LF (2001) Electrochem Solid State Lett 4:A170

    Article  CAS  Google Scholar 

  17. Yamada A, Chung SC, Hinokuma K (2001) J Electrochem Soc 148:A224

    Article  CAS  Google Scholar 

  18. Croce F, D’Epifanio A, Hassoun J, Deptula A, Olczac T, Scrosati B (2002) Electrochem Solid State Lett 5:A47

    Article  CAS  Google Scholar 

  19. Franger S, Cras FL, Bourbon C, Rouault H (2002) Electrochem Solid State Lett 5:A231

    Article  CAS  Google Scholar 

  20. Barker J, Saidi MY, Swoyer JL (2003) Electrochem Solid State Lett 6:A53

    Article  CAS  Google Scholar 

  21. Wang GX, Bewlay S, Yao J, Ahn JH, Dou SX, Liu HK (2004) Electrochem Solid State Lett 7:A503

    Article  CAS  Google Scholar 

  22. Franger S, Bourbon C, Cras FL (2004) J Electrochem Soc 151:A1024

    Article  CAS  Google Scholar 

  23. Mi CH, Zhao XB, Cao GS, Tu JP (2005) J Electrochem Soc 152:A483

    Article  CAS  Google Scholar 

  24. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nat Mater 3:147

    Article  CAS  Google Scholar 

  25. Chung SY, Blocking JT, Chiang YM (2002) Nat Mater 1:123

    Article  CAS  Google Scholar 

  26. Berry BS, Pritchet WC (1978) Solid State Commun 26:827

    Article  CAS  Google Scholar 

  27. Song YN, Zavalij PY, Chernova NA, Whittingham MS (2005) Chem Mater 17:1139

    Article  CAS  Google Scholar 

  28. Santoro RP, Newnham RE (1967) Acta Crystallogr 22:344

    Article  CAS  Google Scholar 

  29. Song YN, Zavalij PY, Suzuki M, Whittingham MS (2002) Inorg Chem 41:5778

    Article  CAS  Google Scholar 

  30. Rousse G, Rodriguez-Carvajal J, Patoux S, Masquelier C (2003) Chem Mater 15:4082

    Article  CAS  Google Scholar 

  31. Andersson AS, Kalska B, Häggström L, Thomas JO (2000) Solid State Ionics 130:41

    Article  CAS  Google Scholar 

  32. Andersson AS, Thomas JO (2001) J Power Sources 97–98:498

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council through the ARC Centre for Nanostructured Electromaterials and the ARC Linkage Project “Large-scale rechargeable lithium battery for power storage and electric vehicle applications”(Project ID: LP0453766). We thank our colleagues Dr. Alexey Pan for help with magnetic property measurement and Dr. X.L. Wang for analysis of magnetic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. X. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, J., Konstantinov, K., Wang, G.X. et al. Electrochemical and magnetic characterization of LiFePO4 and Li0.95Mg0.05FePO4 cathode materials. J Solid State Electrochem 11, 177–185 (2007). https://doi.org/10.1007/s10008-005-0083-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0083-x

Keywords

Navigation