Skip to main content
Log in

Kinetics of oxygen reduction on porous mixed conducting (La0.85Sr0.15)0.9MnO3 electrode by ac-impedance analysis

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The oxygen reduction reaction on mixed conducting (La0.85Sr0.15)0.9MnO3 electrodes with various porosities was investigated by analysis of the ac-impedance spectra. To attain a mixed electronic/ionic conducting state of (La0.85Sr0.15)0.9MnO3 with high oxygen vacancy concentration, the electrode specimen was purposely subjected to cathodic polarisation. The ac-impedance spectrum clearly showed a straight line inclined at a constant angle of 45° to the real axis in the high-frequency range, followed by an arc in the low-frequency range, i.e. it exhibited the Gerischer behaviour. This strongly indicates that oxygen reduction on the mixed conducting electrode involves diffusion of oxygen vacancy through the electrode coupled with the electron exchange reaction between oxygen vacancies and gaseous oxygen (charge transfer reaction) at the electrode/gas interface. It was further recognised that the two-dimensional electrochemical active region for oxygen reduction extends from the origin of the three-phase boundaries (TPBs) among electrode, electrolyte and gas into the electrode/gas interface segments, which is on average approximately 0.7 to 1.1 μm in length below the electrode porosity 0.12. Based from the fact that the ac-impedance spectrum deviated more significantly from the Gerischer behaviour with increasing electrode porosity above 0.22, it is proposed that due to the increased length of TPBs, the rate of the overall oxygen reduction on the highly porous electrode is mainly determined by the charge transfer reaction at the TPBs, and the subsequent diffusion of oxygen vacancy occurs facilely through the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stambouli AB, Traversa E (2002) Renew. Sust Energ Rev 6:433

    Article  CAS  Google Scholar 

  2. Ormerod RM (2003) Chem Soc Rev 32:17

    Article  PubMed  CAS  Google Scholar 

  3. Minh NQ, Badwal SPS, Bannister MJ, Hannink RHJ (ed) (1993) Science and technology of zirconia. Technomic, Lancaster, pp 652–687

  4. Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam, pp 117–146

    Google Scholar 

  5. Vielstich W, Gasteiger HA, Lamm A (2003) Handbook of fuel cells—fundamentals, technology and applications. Wiley, New York, pp 588–600

    Google Scholar 

  6. Mizusaki J, Amano K, Yamauchi S, Fueki K (1987) Solid State Ionics 22:313

    Article  CAS  Google Scholar 

  7. Østergard MJL, Mogensen M (1993) Electrochim Acta 38:2015

    Article  Google Scholar 

  8. Hammouche A, Siebert E, Hammou A, Kleitz M (1994) J Electrochem Soc 141:2118

    Article  Google Scholar 

  9. Gharbage B, Pagnier T, Hammou A (1994) Solid State Ionics 72:248

    Article  CAS  Google Scholar 

  10. Siebert E, Hammouche A, Kleitz M (1995) Electrochim Acta 40:1741

    Article  CAS  Google Scholar 

  11. Yokokawa H, Horita T, Sakai N, Dokiya M, Kawada T (1996) Solid State Ionics 86–88:1161

    Article  Google Scholar 

  12. Heuveln FHV, Bouwmeester HJM (1997) J Electrochem Soc 144:134

    Article  Google Scholar 

  13. Ioroi T, Hara T, Uchimoto Y, Ogumi Z, Takehara ZI (1998) J Electrochem Soc 145:1999

    Article  CAS  Google Scholar 

  14. Jiang SP, Love JG, Zhang JP, Hoang M, Ramprakash Y, Hughes AE, Badwal SPS (1999) Solid State Ionics 121:1

    Article  CAS  Google Scholar 

  15. Matsuzaki Y, Yasuda I (1999) Solid State Ionics 126:307

    Article  CAS  Google Scholar 

  16. Nowotny J, Rekas M (1998) J Am Ceram Soc 81:67

    Article  CAS  Google Scholar 

  17. Jiang Y, Wang S, Zhang Y, Yan J, Li W (1998) J Electrochem Soc 145:373

    Article  CAS  Google Scholar 

  18. Chen XJ, Khor KA, Chan SH (2003) J Power Sources 123:17

    Article  CAS  Google Scholar 

  19. Adler SB, Lane JA, Steele BCH (1996) J Electrochem Soc 143:3554

    Article  CAS  Google Scholar 

  20. Satterfield CN, Sherwood TK (1963) The role of diffusion in catalysis. Addison-Wesley, Boston, pp 11–28

    Google Scholar 

  21. Kuznecov M, Otschik P, Obenaus P, Eichler K, Schaffrath W (2003) Solid State Ionics 157:371

    Article  CAS  Google Scholar 

  22. Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH (1992) Solid State Ionics 53–56:597

    Article  Google Scholar 

  23. Yasuda I, Ogasawara K, Hishinuma M, Kawada T, Dokiya M (1996) Solid State Ionics 86–88:1197

    Article  Google Scholar 

  24. Boukamp BA, Bouwmeester HJM (2003) Solid State Ionics 157:29

    Article  CAS  Google Scholar 

  25. Adler SB (1998) Solid State Ionics 111:125

    Article  CAS  Google Scholar 

  26. Tagawa H, Mori N, Takai H, Yonemura Y, Minamiue H, Inaba H, Mizusaki J, Hashimoto T (1997) Proc. of the 5th Int. Symp. on SOFC, vol PV 97–40, pp 785

  27. Jiang SP (2002) Solid State Ionics 146:1

    Article  CAS  Google Scholar 

  28. Tsuneyoshi K, Mori K, Sawata A, Mizusaki J, Tagawa H (1989) Solid State Ionics 35:263

    Article  CAS  Google Scholar 

  29. Belzner A, Gur TM, Huggins RA (1992) Solid State Ionics 57:327

    Article  CAS  Google Scholar 

  30. de Souza RA, Kilner JA (1998) Solid State Ionics 106:175

    Article  Google Scholar 

Download references

Acknowledgements

The receipt of a research grant No. N-FC12-P-03-3-010 for the 5-year period 2004–2009 from Korea Energy Management Corporation is gratefully acknowledged. Furthermore, this work was partly supported by the Brain Korea 21 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Il Pyun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JS., Pyun, SI., Lee, JW. et al. Kinetics of oxygen reduction on porous mixed conducting (La0.85Sr0.15)0.9MnO3 electrode by ac-impedance analysis. J Solid State Electrochem 11, 117–125 (2007). https://doi.org/10.1007/s10008-005-0080-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0080-0

Keywords

Navigation