Skip to main content
Log in

Activation, microstructure, and polarization of solid oxide fuel cell cathodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Activation effect can be defined as the enhancement of the electrochemical performance or activity of the solid oxide fuel cell cathodes such as Sr-doped LaMnO3 (LSM) with the polarization/current passage treatment under fuel cell operation conditions. In this paper, the activation effect of the cathodic polarization/current passage on the O2 reduction reaction of the LSM-based cathodes is reviewed. In addition to the activation effect, cathodic polarization/current passage also has a significant effect on the microstructure of the LSM electrodes and the morphology between the LSM electrode and Y2O3-ZrO2 electrolyte interface. A mechanism involving the incorporation of SrO species into the LSM lattice and the formation of oxygen vacancies is proposed for the activation effect of the polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. van Heuveln FH, Bouwmeester HJM (1997) J Electrochem Soc 144:134

    Article  Google Scholar 

  2. Jiang SP, Love JG, Zhang JP, Hoang M, Ramprakash Y, Hughes AE, Badwal SPS (1999) Solid State Ionics 121:1

    Article  CAS  Google Scholar 

  3. Chen XJ, Khor KA, Chan SH (2004) Solid State Ionics 167:379

    Article  CAS  Google Scholar 

  4. McIntosh S, Adler SB, Vohs JM, Gorte RJ (2004) Electrochem Solid-State Lett 7:A111

    Article  CAS  Google Scholar 

  5. Kim J-D, Kim G-D, Moon J-W, Park Y-I, Lee W-H, Kobayashi K, Nagai M, Kim C-E (2001) Solid State Ionics 143:379

    Article  CAS  Google Scholar 

  6. Leng YJ, Chan SH, Khor KA, Jiang SP (2004) J Appl Electrochem 34:409

    Article  CAS  Google Scholar 

  7. Sridhar S, Stancovski V, Pal UB (1997) Solid State Ionics 100:17

    Article  CAS  Google Scholar 

  8. Jacobsen T, Zachau-Christiansen B, Bay L, Jørgensen MJ (2001) Electrochim Acta 46:1019

    Article  CAS  Google Scholar 

  9. McEvoy AJ (2003) Solid State Ionics 135:331

    Article  Google Scholar 

  10. Zachau-Christiansen B, Jacobsen T, Bay L, Skaarup S (1998) Solid State Ionics 113–115:271

    Article  Google Scholar 

  11. Hammouche A, Siebert E, Hammou A, Kleitz M, Caneiro A (1991) J Electrochem Soc 138:1212

    Article  CAS  Google Scholar 

  12. Jiang Y, Wang S, Zhang Y, Yan J, Li W (1998) J Electrochem Soc 145:373

    Article  CAS  Google Scholar 

  13. Lee HY, Cho WS, Oh SM, Wiemhöfer H-D, Göpel W (1995) J Electrochem Soc 142:2659

    Article  CAS  Google Scholar 

  14. Odgaard M, Skou E (1996) Solid State Ionics 86–88:1217

    Article  Google Scholar 

  15. Siebert E, Hammouche A, Kleitz M (1995) Electrochim Acta 40:1741

    Article  CAS  Google Scholar 

  16. Jiang SP, Love JG (2001) Solid State Ionics 138:183

    Article  CAS  Google Scholar 

  17. Jiang SP (2003) J Power Sources 124:390

    Article  CAS  Google Scholar 

  18. Lee Y-K, Kim J-Y, Lee Y-K, Kim I, Moon H-S, Park J-W, Jacobson CP, Visco SJ (2003) J Power Sources 115:219

    Article  CAS  Google Scholar 

  19. Wang W, Jiang SP (2004) J Solid State Electrochem 8:914

    Article  CAS  Google Scholar 

  20. Tsukuda H, Yamashita A (1994) In: Bossel U (ed) Proceedings of the 1st European SOFC forum. European Fuel Cells Group, Lucerne, Switzerland, p 715

    Google Scholar 

  21. Kuznecov M, Otschik P, Obenaus P, Eichler K, Schaffrath W (2003) Solid State Ionics 157:371

    Article  CAS  Google Scholar 

  22. Jiang SP, Love JG (2003) Solid State Ionics 158:45

    Article  CAS  Google Scholar 

  23. Jiang SP, Wang W (2005) Solid State Ionics 176:1185

    Article  CAS  Google Scholar 

  24. Jiang SP, Wang W (2005) Electrochem Solid-State Lett 8:A115

    Article  CAS  Google Scholar 

  25. Mitterdorfer A, Gauckler LJ (1998) Solid State Ionics 111:185

    Article  CAS  Google Scholar 

  26. Decorse P, Caboche G, Dufour L-C (1999) Solid State Ionics 117:161

    Google Scholar 

  27. Gharbage B, Pagnier T, Hammou A (1994) J Electrochem Soc 141:2118

    Article  CAS  Google Scholar 

  28. Adler SB (2004) Chem Rev 104:4791

    Article  PubMed  CAS  Google Scholar 

  29. Kawada T, Horita T, Sakai N, Yokokawa H, Dokiya M (1995) Solid State Ionics 79:201

    Article  CAS  Google Scholar 

  30. Horita T, Ishikawa M, Yamaji K, Sakai N, Yokokawa H, Dokiya M (1998) Solid State Ionics 108:383

    Article  CAS  Google Scholar 

  31. Yasuda I, Ogasagawa K, Hishinuma M, Kawada T, Dokiya M (1996) Solid State Ionics 86–88:1997

    Google Scholar 

  32. Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH (1992) Solid State Ionics 53–56:597

    Article  Google Scholar 

  33. Chen XJ, Chan SH, Khor KA (2004) Electrochem Solid State Lett 7:A144

    Article  CAS  Google Scholar 

  34. Majkic G, Mironova M, Wheeler LT, Salama K (2004) Solid State Ionics 167:243

    Article  CAS  Google Scholar 

  35. van der Heide PAW (2002) Surf Interface Anal 33:414

    Article  CAS  Google Scholar 

  36. Viitanen MM, Welzenis RGV, Brongersma HH, van Berkel FPF (2002) Solid State Ionics 150:223

    Article  CAS  Google Scholar 

  37. Mizusaki J, Mori N, Takai H, Yonemura Y, Minamiue H, Tagawa H, Dokiya M, Inaba H, Naraya K, Sasamoto T, Hashimoto T (2000) Solid State Ionics 129:163

    Article  CAS  Google Scholar 

  38. Nowotny J, Rekas M (1998) J Am Ceram Soc 81:67

    Article  CAS  Google Scholar 

  39. Poulsen FW (2000) Solid State Ionics 129:145

    Article  CAS  Google Scholar 

  40. Mitchell JF, Argyriou DN, Potter CD, Hinks DG, Jorgense JD, Bader SD (1996) Phys Rev B 54:6172

    Article  CAS  Google Scholar 

  41. van Roosmalen JAM, Cordfunke EHP, Helmhodt RB, Zandberg HW (1994) J Solid State Chem 110:100

    Article  Google Scholar 

  42. Alonso JA, Martinez-Lope MJ, Casais MT, MacManus-Driscoll JL, de Silva PSIPN, Cohen LF, Fernández-Diaz MT (1997) J Mater Chem 7:2139

    Article  CAS  Google Scholar 

  43. Cook RE, Goretta KC, Wolfenstine J, Nash P, Routbort JL (1999) Acta Mater 47:2969

    Article  CAS  Google Scholar 

  44. Shao ZP, Dong H, Xiong GX, Cong Y, Yang WS (2001) J Membr Sci 183:181

    Article  CAS  Google Scholar 

  45. Schulz O, Martin M (2000) Solid State Ionics 135:549

    Article  CAS  Google Scholar 

  46. de Souza RA, Islam MS, Ivers-Tiffée E (1999) J Mater Chem 9:1621

    Article  Google Scholar 

  47. Cherry M, Islam MS, Catlow CRA (1995) J Solid State Chem 118:125

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San Ping Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, S.P. Activation, microstructure, and polarization of solid oxide fuel cell cathodes. J Solid State Electrochem 11, 93–102 (2007). https://doi.org/10.1007/s10008-005-0076-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0076-9

Keywords

Navigation