Skip to main content
Log in

Inhibition activity of ethyleneglycol and its oligomers on tin electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Voltammetry and electrochemical impedance spectroscopy were applied to investigate the inhibition activity of ethyleneglycol and its oligomers on tin electrode in strong acidic sulfate solutions. Tetraethyleneglycol was found to be the most active substance among compounds HO–(CH2–CH2–O) m –H (m≤4) that retards diffusion-controlled Sn(II) reduction due to its inhibitive adsorption. This rather slow process is controlled both by diffusion and electrosorption steps. A comparison of exchange current densities obtained in the presence of different polyethers shows that the length of the hydrocarbon chain is the main factor responsible for inhibition activity of such substances on tin electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Meibuhr S, Yeager E, Kozawa A, Hovorka F (1963) The electrochemistry of Sn. Effects of nonionic addition agents on electrodeposition from stannous sulfate solutions. J Electrochem Soc 110:190

    Article  CAS  Google Scholar 

  2. Galdikienė O, Mockus Z (1994) Cathodic process in copper–tin deposition from sulphate solutions. J Appl Electrochem 24:1009

    Google Scholar 

  3. Mockus Z (1995) Electrochemical codeposition of copper and tin in acid sulphate solutions. Ph.D. Thesis Vilnius

  4. Medvedev GI, Tkachenko NA (1984) Electrodeposition of copper–tin alloy from sulphate electrolyte in the presence of sintanol DS-10. Zashchita Metallov 3:484

    Google Scholar 

  5. Survila A, Mockus Z, Kanapeckaitė S, Samulevičienė M (2002) Adsorption behaviour of laprol 2402 C on copper electrode. Polish J Chem 76:983

    CAS  Google Scholar 

  6. Survila A, Mockus Z, Kanapeckaitė S (2002) Adsorption behaviour of laprol 2402 C on a tin electrode. Trans IMF 80:85

    CAS  Google Scholar 

  7. Stoychev D, Tsvetanov CJ (1996) Behaviour of poly(ethylene glycol) during electrodeposition of bright copper coatings in sulfuric acid electrolytes. J Appl Electrochem 26:741

    Article  CAS  Google Scholar 

  8. Stoychev D, Tsvetanov CJ (1998) On the role of poly(ethylene glycol) in deposition of galvanic copper coatings. Trans IMF 26:73

    Google Scholar 

  9. Survila A, Mockus Z, Kanapeckaitė S (2003) Effect of halides on adsorption properties of polyether laprol 2402 C on copper and tin electrodes. J Electroanal Chem 552:97

    Article  CAS  Google Scholar 

  10. Glarum SH, Marshall JH (1983) Admittance study of the Sn electrode. J Electrochem Soc 130:1088

    Article  CAS  Google Scholar 

  11. Medvedev GI, Trubnikova ON (1984) Investigation of kinetics of tin electrodeposition from sulphate electrolyte in the presence of sintanol DS-10. Elektrokhimiya 20:846

    CAS  Google Scholar 

  12. Survila A, Mockus Z, Kanapeckaitė S, Samulevičienė M (2005) Effect of sintanol DS-10 and halides on tin(II) reduction kinetics. Electrochim Acta 50:2879

    Article  CAS  Google Scholar 

  13. Reid JD, David AP (1987) Effects of polyethylene glycol on the electrochemical characteristics of copper cathodes in acid copper medium. Plat Surf Finish 74:66

    CAS  Google Scholar 

  14. Bražinskienė D, Survila A (2005) Effect of ethylene glycol and its oligopolymers on the copper(II) electroreduction kinetics in halide-containing acid sulphate solutions. Russ J Electrochem 41:979

    Article  CAS  Google Scholar 

  15. Boukamp BA (1989) Equivalent circuits (EQUIVCRT.PAS), users manual. University of Twente, The Netherlands

    Google Scholar 

  16. Bražinskienė D, Survila A, Samulevičienė M (2005) Cu(II) electroreduction kinetics in acidic sulphate solutions containing tetraethyleneglycol and small amounts of chlorides. Chemija (Vilnius) 16:20

    Google Scholar 

  17. Quintin M, Hagymas G (1964) Contribution a l’etude de la corrosion électrochimique de l’étain en milieu sulfurique. J Chim Phys 61:541

    CAS  Google Scholar 

  18. Kostryukova GG, Ratkov OI, Kazakov VA, Ginberg AM, Vagramyan AT (1969) On the application of relaxation methods for study of metal electrodeposition processess. I. Electrode Sn/Sn2+. Elektrokhimiya 5:571

    CAS  Google Scholar 

  19. Galus Z (1975) Tin. In: Bard AJ (ed) Encyclopedia of electrochemistry of the elements, vol 4. Dekker, New York, pp 223–271

    Google Scholar 

  20. Survila A, Mockus Z, Kanapeckaitė S (2001) Voltammetric characterization of laprol 2402 C adsorption on copper and tin electrodes. Chemija (Vilnius) 12:241

    CAS  Google Scholar 

  21. Väärtnõu M, Lust E (2004) Impedance characteristics of iodine ions adsorption on Bi single crystal planes in ethanol. J Electroanal Chem 565:211

    Article  CAS  Google Scholar 

  22. Nurk G, Kasuk H, Lust K, Jänes A, Lust E (2003) Adsorption kinetics of dodecyl sulfate anions on the bismuth (011) plane. J Electroanal Chem 553:1

    Article  CAS  Google Scholar 

  23. Macdonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  24. Frumkin AN, Melik-Gaikazyan VI (1951) Determination of the kinetics of adsorption of organic substances by a.-c. measurements of the capacity and the conductivity at the boundary: electrode-solution. Dokl Akad Nauk USSR 77:855

    CAS  Google Scholar 

  25. Berzins T, Delahay P (1955) Electrochemical method for the kinetic study of fast adsorption processes. J Phys Chem 59:906

    Article  CAS  Google Scholar 

  26. Lorenz W, Möckel F (1956) Adsorptionsisotherme und Adsorptionskinetik kapillaraktiver organischer Molekeln an der Quecksilberelektrode. Z Elektrochem 60:507

    CAS  Google Scholar 

  27. Sluyters-Rehbach M, Sluyters JH (1970) Sine wave methods in the study of electrode processes. In: Bard AJ (ed) Electroanal Chemistry, vol 4. Dekker, New York, pp 75–77

    Google Scholar 

  28. Retter U, Jehring H (1973) Untersuchungen der adsorptionskinetik an der phasengrenze quecksilber/elektrolyt durch analoge messung der doppelschichtadmittanz. J Electroanal Chem 46:375

    Article  CAS  Google Scholar 

  29. Pajkossy T, Wandlowski Th, Kolb DM (1996) Impedance aspects of anion adsorption on gold single crystal electrodes. J Electroanal Chem 414:209

    Article  Google Scholar 

  30. Jovič VD, Jovič BM (2003) EIS and differential capacitance measurements onto single crystal faces in different solutions: Part I: Ag(111) in 0.01 M NaCl. J Electroanal Chem 541:1

    Article  Google Scholar 

  31. Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH (1984) The analyses of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem 176:275

    Article  CAS  Google Scholar 

  32. Retter U, Widmann A, Siegler K, Kahlert H (2003) On the impedance of potassium nickel(II) hexacyanoferrate(II) composite electrodes—the generalization of the Randles model referring to inhomogenous electrode materials. J Electroanal Chem 546:87

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to Dr. M. Samulevičienė for her kind assistance in performing impedance measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvydas Survila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Survila, A., Bražinskienė, D. Inhibition activity of ethyleneglycol and its oligomers on tin electrode. J Solid State Electrochem 11, 65–70 (2007). https://doi.org/10.1007/s10008-005-0070-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0070-2

Keywords

Navigation