Skip to main content

Advertisement

Log in

Nano-polypyrrole supercapacitor arrays prepared by layer-by-layer assembling method in anodic aluminum oxide templates

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel method for preparing nano-supercapacitor arrays, in which each nano-supercapacitor consisted of electropolymerized Polypyrrole (PPy) electrode / porous TiO2 separator / chemical polymerized PPy electrode, was developed in this paper. The nano-supercapacitors were fabricated in the nano array pores of anodic aluminum oxide template using the bottom-up, layer-by-layer synthetic method. The nano-supercapacitor diameter was 80 nm, and length 500 nm. Based on the charge/discharge behavior of nano-supercapacitor arrays, it was found that the PPy/TiO2/PPy array supercapacitor devices performed typical electrochemical supercapacitor behavior. The method introduced here may find application in manufacturing nano-sized electrochemical power storage devices in the future for their use in the area of microelectronic devices and microelectromechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lonergan MC (1997) Science 278:2103

    Article  PubMed  Google Scholar 

  2. Kaneto K, Takeda S, Yoshino K (1985) Jpn J Appl Phys 24:L553

    Article  Google Scholar 

  3. Gao J, Heeger AJ, Lee JY, Kim CY (1996) Synth Met 82:221

    Article  CAS  Google Scholar 

  4. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG, MacFarlane DR, Forsyth SA, Forsyth M (2002) Science 297:983

    Article  PubMed  CAS  Google Scholar 

  5. Xie H, Yan M, Jiang Z (1997) Electrochim Acta 42:2361

    Article  CAS  Google Scholar 

  6. Panero S, Prosperi P, Scrosati B (1987) Electrochim Acta 32:1465

    Article  CAS  Google Scholar 

  7. Novak P, Vielstich W (1990) J Electrochem Soc 137:1036

    Article  CAS  Google Scholar 

  8. Jurewicz K, Delpeux S, Bertagna V, Beguin F, Frackowiak E (2001) Chem Phys Lett 347:36

    Article  CAS  Google Scholar 

  9. Hashmi SA, Upadhyaya HM (2002) Solid State Ionics 152–153:883

    Article  Google Scholar 

  10. Zhang Q, Zhou X, Yang H (2004) J Power Sources 125:141

    Article  CAS  Google Scholar 

  11. Sung J-H, Kim S-J, Lee K-H (2004) J Power Sources 133:312

    Article  CAS  Google Scholar 

  12. Noh KA, Kim D-W, Jin C-S, Shin K-H, Kim JH, Ko JM (2004) J Power Sources 124:593

    Article  CAS  Google Scholar 

  13. Ingram MD, Staesche H, Ryder KS (2004) J Power Sources 129:107

    Article  CAS  Google Scholar 

  14. Ingram MD, Staesche H, Ryder KS (2004) Solid State Ionics 169:51

    Article  CAS  Google Scholar 

  15. Ingram MD, Pappin AJ, Delalande F, Poupard D, Terzouli G (1998) Electrochim Acta 48:1601

    Article  Google Scholar 

  16. Striebel KA, Deng CZ, Wen SJ, Cairns EJ (1996) J Electrochem Soc 143:1821

    Article  CAS  Google Scholar 

  17. Sung J-H, Kim S-J, Lee K-H (2003) J Power Sources 124:343

    Article  CAS  Google Scholar 

  18. Miura T, Kishi T (1995) Mat Res Soc Symp Proc 393:69

    CAS  Google Scholar 

  19. Xu F, Wang T, Li W, Jiang Z (2003) Chem Phys Lett 375:247

    Article  CAS  Google Scholar 

  20. Martin BR, Dermody DJ, Reiss BD, Fang M, Lyon LA, Natan MJ, Mallouk TE (1999) Adv Mater 11:1021

    Article  CAS  Google Scholar 

  21. Salem AK, Searson PC, Leong KW (2003) Nat Mater 2:668

    Article  PubMed  CAS  Google Scholar 

  22. Foss CA, Hornyak GL, Stockert JA, Martin CR (1994) J Phys Chem 98:2963

    Article  CAS  Google Scholar 

  23. Hirata Y, Kyoda H, Hatano H (1994) Mater Lett 21:154

    Article  Google Scholar 

  24. Prieto AL, Sander MS, Martin-González MS, Gronsky R, Sands T, Stacy AM (2001) J Am Chem Soc 123:7160

    Article  PubMed  CAS  Google Scholar 

  25. Li X, Zhang X, Li H (2001) J Appl Polym Sci 81:3002

    Article  CAS  Google Scholar 

  26. Masuda H, Fukuda K (1995) Science 268:1466

    Article  CAS  Google Scholar 

  27. Li AP, Müller F, Birner A, Nielsch K, Gösele U (1999) Adv Mater 11:483

    Article  CAS  Google Scholar 

  28. Diaz AF, Castillo JI (1980) J Chem Soc Chem Commun 397

  29. Kavan L, O’Regan B, Kay A, Grätzel M (1993) J Electroanal Chem 346:291

    Article  CAS  Google Scholar 

  30. Lu Y, Shi G, Li C, Liang Y (1998) J Appl Polym Sci 70(11):2169

    Article  CAS  Google Scholar 

  31. Kim JM, Chang SM, Muramatsu H (1999) J Electrochem Soc 146:4544

    Article  CAS  Google Scholar 

  32. Panero S, Prosperi P, Scrosati B (1992) Electrochim Acta 37(2):419

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Science Foundation of China, Fudan University Graduate Innovative Foundation and Shanghai Nanotechnology Promotion Center (Project No. 0259 nm 023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Zhao, Y., Zhou, Q. et al. Nano-polypyrrole supercapacitor arrays prepared by layer-by-layer assembling method in anodic aluminum oxide templates. J Solid State Electrochem 11, 32–37 (2007). https://doi.org/10.1007/s10008-005-0063-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0063-1

Keywords

Navigation