Skip to main content
Log in

Electrochemical nanogravimetric study on the ruthenium(III) trichloride–polyaniline nanocomposite

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ruthenium(III) trichloride microcrystals were soaked in aniline and aniline/acetonitrile mixtures. In all cases, polyaniline (PANI) was formed as a result of the intercalation of aniline into the layered structure of RuCl3 crystal and the reaction between aniline and the host material. The appearance of polyaniline was proven by infrared spectroscopy. The as-formed (PANI) z+ x (RuCl3) z y nanocomposites were attached to gold surfaces and studied by cyclic electrochemical nanogravimetry. The sorption of aniline and its effect on the nanocomposites immobilized on gold were also studied in supporting electrolytes. The redox behaviour of the composite shows the electrochemical transformations of both polyaniline and RuCl3. The redox waves of PANI are similar to those observed for very thin PANI films. It attests that the response is originated from monolayer-like PANI film situated between RuCl3 layers. The transport of the charge-compensating ions reflects the variation of the oxidation states of both PANI and RuCl3. The nanocomposites behave as self-doped layers in the potential region when both constituents are charged, i.e. PANI is partially oxidized while RuCl3 is partially reduced, since the electroneutrality is assured by mutual charge compensation. When PANI is reduced, cations enter the layer to counterbalance the negative charge resulting from the reduction of Ru(III) to Ru(II). It was also found that the intercalation of water molecules is—albeit still substantial—smaller than that of pure RuCl3 microcrystals, which is related to the presence of PANI between the RuCl3 layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang L, Brazis P, Rocci M, Kannewurf CR, Kanatzidis MG (1998) Chem Mater 10:3298

    Article  CAS  Google Scholar 

  2. Wang L, Rocci-Lane M, Brazis P, Kannewurf CR, Kim YI, Lee W, Choy JH, Kanatzidis MG (2000) J Am Chem Soc 122:6629

    Article  CAS  Google Scholar 

  3. Alberti G, Bein T (eds) (1996) Comprehensive supramolecular chemistry, vol 7. Elsevier, New York

  4. Gianellis EP (1996) Adv Mater 8:29

    Article  Google Scholar 

  5. Leroux F, Goward G, Power WP, Nazar LF (1997) J Electrochem Soc 144:3886

    Article  CAS  Google Scholar 

  6. Wang Y, Herron N (1996) Science 273:632

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  7. Cotton FA, Wilkinson G, Murillo CA, Bochman M (1999) Advanced inorganic chemistry. Wiley, New York, pp 1010–1039

    Google Scholar 

  8. Livingstone SE (1973) In: Bailar JC, Emeléus MJ, Nyholm R, Trotman-Dickenson AF (eds) Comprehensive inorganic chemistry, vol 3. Pergamon, Oxford, pp 1163–1370

  9. Chandret B, Sabo-Etienne S (1994) In: King RB (ed) Encyclopedia of inorganic chemistry, vol 7. Wiley, Chichester

  10. Schöllhorn R, Steffen R, Wagner K (1983) Angew Chem 95:559

    Article  Google Scholar 

  11. Steffen R, Schöllhorn R (1986) Solid State Ionics 22:31

    Article  CAS  Google Scholar 

  12. Pollini I (1994) Phys Rev B 50:4

    Article  Google Scholar 

  13. Pollini I (1996) Phys Rev B 53:19

    Article  Google Scholar 

  14. Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electrochim Acta 45:2403

    Article  CAS  Google Scholar 

  15. Paul EW, Ricco AJ, Wrighton MS (1985) J Phys Chem 89:1441

    Article  CAS  Google Scholar 

  16. Csahók E, Vieil E, Inzelt G (2000) J Electroanal Chem 482:168

    Article  Google Scholar 

  17. Probst M, Holze R (1995) Electrochim Acta 40:213

    Article  CAS  Google Scholar 

  18. Appelbaum L, Heinrichs C, Demtschuk J, Michman M, Oron M, Schäfer HJ, Schumann H, (1999) Organomet J Chem 592:240

    Article  CAS  Google Scholar 

  19. Llopis JF, Tordesillas IM (1976) In: Bard AJ (ed) Encyclopedia of electrochemistry, vol 6. Marcel Dekker, New York, p 277

  20. Colom F (1985) In: Bard AJ, Parsons R, Jordan J (eds) Standard potentials in aqueous solution. Marcel Dekker, New York, p 413

  21. Scholz F, Meyer B (1998) In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, vol. 20. Marcel Dekker, New York, p 1

  22. Grygar T, Marken F, Schröder U, Scholz F (2002) Cell Czech Chem Commun 67:163

    Article  CAS  Google Scholar 

  23. Fiedler DA, Scholz F (2002) In: Scholz F (ed) Electroanalytical methods, chap II, vol 8. Springer, Berlin Heidelberg New York, pp 201–222

  24. Inzelt G, Puskás Z (2004) Electrochem Commun 6:805

    Article  CAS  Google Scholar 

  25. Fehér K, Inzelt G (2002) Electrochim Acta 47:3551

    Article  Google Scholar 

  26. Inzelt G (2003) J Solid State Electrochem 7:503

    Article  CAS  Google Scholar 

  27. Inzelt G, Puskás Z (2004) Electrochim Acta 49:1969

    Article  CAS  Google Scholar 

  28. Bácskai J, Kertész V, Inzelt G (1993) Electrochim Acta 38:393

    Article  Google Scholar 

  29. Habib MA, Maheswari SP (1989) J Electrochem Soc 136:1050

    Article  CAS  Google Scholar 

  30. Seeger D, Kowalchyk W, Korzeniewski C (1990) Langmuir 6:1527

    Article  CAS  Google Scholar 

  31. Ping Z, Nauer GE, Neugebauer H, Theiner J, Neckel A (1997) J Chem Soc Faraday Trans 93:121

    Article  CAS  Google Scholar 

  32. Zimmermann A, Künzelman U, Dunsch L (1998) Synth Met 93:17

    Article  CAS  Google Scholar 

  33. Hatchett DW, Josowicz M, Janata J (1999) J Electrochem Soc 146:4535

    Article  CAS  Google Scholar 

  34. Maia DJ, Das Neves S, Alves OL, De Paoli MA (1999) Electrochim Acta 44:1945

    Article  CAS  Google Scholar 

  35. Barbero C, Miras MC, Haas O, Kötz R (1997) J Electrochem Soc 144:4170

    Article  CAS  Google Scholar 

  36. Varela H, Torresi RM, Buttry DA (2000) J Braz Chem Soc 11:32

    Article  CAS  Google Scholar 

  37. Kalaji M, Nyholm L, Peter LM (1991) J Electroanal Chem 313:271

    Article  CAS  Google Scholar 

  38. Pruneanu S, Csahók E, Kertész V, Inzelt G (1998) Electrochim Acta 43:2305

    Article  CAS  Google Scholar 

  39. Orata D, Buttry DA (1998) J Electroanal Chem 257:71

    Article  Google Scholar 

  40. Malinauskas A, Holze R (1998) Electrochim Acta 43:515

    Article  Google Scholar 

  41. Varela H, Albuquerque Maranho SL, Mello RMQ, Ticianelli EA, Torresi RM (2001) Synth Met 122:321

    Article  CAS  Google Scholar 

  42. Ding H, Park SM (2003) J Electrochem Soc 150:E33

    Article  CAS  Google Scholar 

  43. Bauermann LP, Bartlett PN (2005) Electrochim Acta 50:1537

    Article  CAS  Google Scholar 

  44. Inzelt G, Puskás Z, Németh K, Varga I (2005) J Solid State Electrochem (in press)

  45. Vorotyntsev MA, Daikin LI, Levi MD (1994) J Electroanal Chem 364:37

    Article  CAS  Google Scholar 

  46. Gabrielli C, Keddam M, Nadi N, Perrot H (1999) Electrochim Acta 44:2095

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the National Scientific Research Fund (OTKA T046987) is gratefully acknowledged. The authors express their thanks to G. Magyarfalvi for his help in the FTIR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Inzelt.

Additional information

Dedicated to Prof. Mikhail A. Vorotyntsev on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inzelt, G., Puskàs, Z. Electrochemical nanogravimetric study on the ruthenium(III) trichloride–polyaniline nanocomposite. J Solid State Electrochem 10, 125–133 (2006). https://doi.org/10.1007/s10008-005-0054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0054-2

Keywords

Navigation