Skip to main content
Log in

Nucleation and growth of Cu onto polycrystalline Pt electrode from acidic CuSO4 solution in the presence of H2SeO3

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The early stages of Cu electrodeposition onto Pt(poly) have been investigated in 0.5 M H2SO4 + 0.01 M CuSO4 solution without or with H2SeO3 when a molar concentration ratio [Cu(II)]/[Se(IV)] ≥ 2×102 using electrochemical and ex situ AFM techniques. The overpotential deposition of Cu has been performed onto a Pt surface precovered independently with Cu in amount close to an equivalent monolayer. Chronoamperometric results have been shown to follow an instantaneous 3D nucleation and diffusion-controlled growth model. The values of diffusion coefficient D for Cu2+, number of nuclei N and average nuclei radius r av have been calculated. In the local regions of the surface, the separate large agglomerates composed of the different diameter clusters have been revealed in both cases, but, in the presence of the H2SeO3, they attained a distinct chain-like configuration. Some morphological characteristics have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Budevski E, Staikov G, Lorenz WJ (2000) Electrochim Acta 45:2559

    Article  CAS  Google Scholar 

  2. Lorenz WJ, Staikov G, Schindler W, Wiesbeck W (2002) J Electrochem Soc 149:K47

    Article  CAS  Google Scholar 

  3. Martins ME, Salvarezza RC, Arvia AJ (1992) Electrochim Acta 37:2203

    Article  CAS  Google Scholar 

  4. Kolb DM (1978) Physical and electrochemical properties of metal monolayers on metallic substrates. In: Gerischer H, Tobias ChW (eds) Advances in electrochemistry and electrochemical engineering, vol 11. Wiley, New York, pp 125–271

  5. Furuya N, Motoo S (1976) J Electroanal Chem 72:165

    Article  CAS  Google Scholar 

  6. Hammond JS, Winograd N (1977) J Electroanal Chem 80:123

    Article  CAS  Google Scholar 

  7. Margheritis D, Salvarezza RC, Giordano MC, Arvia AJ (1987) J Electroanal Chem 229:327

    Article  CAS  Google Scholar 

  8. Plieth W (1992) Electrochim Acta 37:2115

    Article  CAS  Google Scholar 

  9. Nichols RJ, Beckmann W, Meyer H, Batina N, Kolb DM (1992) J Electroanal Chem 330:381

    Article  CAS  Google Scholar 

  10. Michailova E, Vitanova I, Stoychev D, Milchev A (1993) Electrochim Acta 38:2455

    Article  Google Scholar 

  11. Fabricius G, Kontturi K, Sundholm G (1994) Electrochim Acta 39:2353

    Article  CAS  Google Scholar 

  12. Rynders RM, Alkire RC (1994) J Electrochem Soc 141:1166

    Article  CAS  Google Scholar 

  13. Peykova M, Michailova E, Stoychev D, Milchev A (1995) Electrochim Acta 40:2595

    Article  CAS  Google Scholar 

  14. Rashkov R, Nanev C (1995) J Appl Electrochem 25:603

    Article  CAS  Google Scholar 

  15. Hölzle MH, Apsel CW, Will T, Kolb DM (1995) J Electrochem Soc 142:3741

    Article  Google Scholar 

  16. Tarallo A, Heerman L (1999) J Appl Electrochem 29:585

    Article  CAS  Google Scholar 

  17. Radisic A, West AC, Searson PC (2002) J Electrochem Soc 149:C94

    Article  CAS  Google Scholar 

  18. Llorca MJ, Herrero E, Feliu JM, Aldaz A (1994) J Electroanal Chem 373:217

    Article  CAS  Google Scholar 

  19. Herrero E, Rodes A, Pérez JM, Feliu JM, Aldaz A (1996) J Electroanal Chem 412:165

    Article  Google Scholar 

  20. Bhattacharya RN, Fernandez AM, Contreras MA, Keane J, Tenant A, Ramanathan K, Tuttle JR, Noufi RN, Hermann AM (1996) J Electrochem Soc 143:854

    Article  CAS  Google Scholar 

  21. Lippkow D, Strehblow H-H (1998) Electrochim Acta 43:2131

    Article  CAS  Google Scholar 

  22. Carbonnelle P, Lamberts L (1992) J Electroanal Chem 340: 53

    Article  CAS  Google Scholar 

  23. Massaccesi S, Sanchez S, Vedel J (1993) J Electrochem Soc 140:2540

    Article  CAS  Google Scholar 

  24. Marlot A, Vedel J (1999) J Electrochem Soc 146:177

    Article  CAS  Google Scholar 

  25. Kemell M, Saloniemi H, Ritala M, Leskelä M (2000) Electrochim Acta 45:3737

    Article  CAS  Google Scholar 

  26. Hill MRH, Rogers GT (1976) J Electroanal Chem 68:149

    Article  CAS  Google Scholar 

  27. Lezhava TI (1989) Acceleration at Metal Deposition. Diss Frumkin Inst Electrochem, Moscow

    Google Scholar 

  28. Steponavičius A, Šimkūnaitė D, Jasulaitienė V (1997) Chemija No 2:64

    Google Scholar 

  29. Riveros G, Henriquez R, Córdova R, Schrebler R, Dalchiele EA, Gómez H (2001) J Electroanal Chem 504:160

    Article  CAS  Google Scholar 

  30. Steponavičius A, Šimkūnaitė D, Lichušina S, Kapočius V (2001) Chemija 12:147

    Google Scholar 

  31. Steponavičius A, Šimkūnaitė D (2002) Bull Electrochem 18:367

    Google Scholar 

  32. Biegler T, Rand DAJ, Woods R (1971) J Electroanal Chem 29:269

    Article  CAS  Google Scholar 

  33. Steponavičius A, Šimkūnaitė D (2002) Rus J Electrochem 38:488

    Article  Google Scholar 

  34. Jerkiewicz G, Vatankhab Gh, Lessard J, Soriaga MP, Park Y-S (2004) Electrochim Acta 49:1451

    CAS  Google Scholar 

  35. Danilov AI, Molodkina EB, Polukarov YuM (2000) Rus J Electrochem 36:976

    Article  CAS  Google Scholar 

  36. Šimkūnaitė D, Ivaškevič E, Jasulaitienė V, Steponavičius A (2003) Bull Electrochem 19:437

    Google Scholar 

  37. Šimkūnaitė D, Ivaškevič E, Jasulaitienė V, Kaliničenko A, Valsiūnas I, Steponavičius A (2004) Chemija 15:12

    Google Scholar 

  38. Bosco E, Rangarajan SK (1981) J Chem Soc Faraday Trans 1 77:1673

    Google Scholar 

  39. Breiter MW (1969) Trans Faraday Soc 65:2197

    Article  CAS  Google Scholar 

  40. Jüttner K, Lorenz WJ, Staikov G, Budevski E (1978) Electrochim Acta 23:741

    Article  Google Scholar 

  41. Gunawardena GA, Hills GJ, Montenegro I (1978) Electrochim Acta 23:693

    Article  CAS  Google Scholar 

  42. Gunawardena GA, Hills G, Montenegro I, Scharifker B (1982) J Electroanal Chem 138:225

    Article  CAS  Google Scholar 

  43. Scharifker B, Hills G (1983) Electrochim Acta 28:879

    Article  CAS  Google Scholar 

  44. Grujicic D, Pesic B (2002) Electrochim Acta 47:2901

    Article  CAS  Google Scholar 

  45. Leone A, Marino W, Scharifker BR (1992) J Electrochem Soc 139:438

    Article  CAS  Google Scholar 

  46. Quickenden TI, Xu Q (1996) J Electrochem Soc 143:1248

    Article  CAS  Google Scholar 

  47. Yu J, Wang L, Su L, Ai X, Yang H (2003) J Electrochem Soc 150:C19

    Article  CAS  Google Scholar 

  48. Palmisano F, Desimoni E, Sabbatini L, Torsi G (1979) J Appl Electrochem 9:517

    Article  CAS  Google Scholar 

  49. Ehlers C, König U, Staikov G, Schultze JW (2001) Electrochim Acta 47:379

    Article  CAS  Google Scholar 

  50. Serruya A, Mostany J, Scharifker BR (1999) J Electroanal Chem 464:39

    Article  CAS  Google Scholar 

  51. Radisic A, Long JG, Hoffmann PM, Searson PC (2001) J Electrochem Soc 148:C41

    Article  CAS  Google Scholar 

  52. Danilov AI, Molodkina EB, Baitov AA, Pobelov IV, Polukarov YuM (2002) Rus J Electrochem 38:743

    Article  CAS  Google Scholar 

  53. Oskam G, Searson PC (2000) J Electrochem Soc 147:2199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dijana Šimkūnaitė.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šimkūnaitė, D., Ivaškevič, E., Kaliničenko, A. et al. Nucleation and growth of Cu onto polycrystalline Pt electrode from acidic CuSO4 solution in the presence of H2SeO3 . J Solid State Electrochem 10, 447–457 (2006). https://doi.org/10.1007/s10008-005-0034-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0034-6

Keywords

Navigation