Skip to main content
Log in

Potentiometric sensors for Ag+ based on poly(3-octylthiophene) (POT)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Potentiometric ion sensors were prepared from the conjugated polymer poly(3-octylthiopene) (POT). The influence of additional membrane components, including silver 7,8,9,10,11,12-hexabromocarborane (AgCB11H6Br6) and potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (KTpFPB) as lipophilic salts, and [2.2.2]p,p,p-cyclophane as silver ionophore, was studied. The membrane components were dissolved in chloroform and membranes were prepared by solution casting on glassy carbon disk electrodes. For comparison, POT-based potentiometric sensors were also prepared by galvanostatic electrosynthesis of POT from the 3-octylthiophene monomer. All the POT-based ion sensors fabricated by solution casting show Nernstian or slightly sub-Nernstian response to Ag+, even those based only on POT without any additional membrane components. The potentiometric response of electrochemically polymerized POT depends on the film thickness and the doping anion incorporated in the conducting polymer during polymerization. It is of particular importance that chemically synthesized undoped POT (without any additives) shows a sensitive and selective potentiometric response to Ag+ ions although UV-vis results show that POT remains in its undoped form, i.e., POT is not oxidized by Ag+. This indicates that undoped POT can exhibit good sensitivity and selectivity to Ag+ also in the absence of metallic silver in the polymer film. In this case, the potentiometric response is related to interactions between Ag+ and the conjugated polymer backbone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mascini M, Liberti A (1970) Anal Chim Acta 51:231

    Article  CAS  Google Scholar 

  2. Schmidt E, Pungor E (1971) Anal Lett 4:641

    CAS  Google Scholar 

  3. Veselý J, Jensen OJ, Nicolaisen B (1972) Anal Chim Acta 62:1

    Article  Google Scholar 

  4. Liteanu C, Popescu IC, Ciovirnache V (1972) Talanta 19:985

    Article  CAS  Google Scholar 

  5. Umezawa Y (eds) (1990) CRC handbook of ion-selective electrodes: selectivity coefficients, CRC Press Inc., Boca Raton

    Google Scholar 

  6. Bühlmann P, Pretsch E, Bakker E (1998) Chem Rev 98:1593

    Article  PubMed  Google Scholar 

  7. Umezawa Y, Bühlmann P, Umezawa K, Tohda K, Amemiya S (2000) Pure Appl Chem 72:1851

    Article  CAS  Google Scholar 

  8. Cobben PLHM, Egberink RJM, Bomer JG, Bergveld P, Verboom W, Reinhoudt DN (1992) J Am Chem Soc 114:10573

    Article  CAS  Google Scholar 

  9. Malinowska E, Brzózka Z, Kasiura K, Egberink RJM, Reindhoudt DN (1994) Anal Chim Acta 298:245

    Article  CAS  Google Scholar 

  10. Kimura K, Yajima S, Tatsumi K, Yokoyama M, Oue M (2000) Anal Chem 72:5290

    Article  PubMed  CAS  Google Scholar 

  11. Mahajan RK, Kumar M, Sharma V, Kaur I (2001) Analyst 126:505

    Article  PubMed  CAS  Google Scholar 

  12. Shinohara T, Higuchi H, Senba Y, Ohto K, Yoshizuka K, Inoue K (2001) Anal Sci 17:889

    Article  CAS  Google Scholar 

  13. Chen L, Ju H, Zeng X, He X, Zhang Z (2001) Anal Chim Acta 437:191

    Article  CAS  Google Scholar 

  14. Lim SM, Chung HJ, Paeng K-J, Lee C-H, Choi HN, Lee W-Y (2002) Anal Chim Acta 453:81

    Article  CAS  Google Scholar 

  15. Mahajan RK, Kaur I, Kumar M (2003) Sens Actuators B 91:26

    Article  CAS  Google Scholar 

  16. Sil A, Ijeri VS, Srivastava AK (2001) Anal Sci 17:477

    Article  PubMed  CAS  Google Scholar 

  17. Bryce MR, Johnston B, Kataky R, Toth K (2000) Analyst 125:861

    Article  CAS  Google Scholar 

  18. Mahajan RK, Parkash O (2000) Talanta 52:691

    Article  CAS  Google Scholar 

  19. Amini MK, Ghaedi M, Rafi A, Mohamadpoor-Baltork I, Niknam K (2003) Sens Actuators B 96:669

    Article  CAS  Google Scholar 

  20. Abbaspour A, Izadyar A, Shargi H (2004) Anal Chim Acta 525:91

    Article  CAS  Google Scholar 

  21. Mahajan RK, Sood P, Mahajan MP, Singh P (2004) Anal Sci 20:1423

    Article  PubMed  CAS  Google Scholar 

  22. Bobacka J, Lahtinen T, Nordman J, Häggström S, Rissanen K, Lewenstam A, Ivaska A (2001) Electroanalysis 13:723

    Article  CAS  Google Scholar 

  23. Bobacka J, Lahtinen T, Koskinen H, Rissanen K, Lewenstam A, Ivaska A (2002) Electroanalysis 14:1353

    Article  CAS  Google Scholar 

  24. Bobacka J, Väänänen V, Lewenstam A, Ivaska A (2004) Talanta 63:135

    Article  CAS  Google Scholar 

  25. Vázquez M, Bobacka J, Luostarinen M, Rissanen K, Lewenstam A, Ivaska A (2005) J Solid State Electrochem 9:312

    Article  CAS  Google Scholar 

  26. Roncali J, Garreau R, Yassar A, Marque P, Garnier F, Lemaire M (1987) J Phys Chem 91:6706

    Article  CAS  Google Scholar 

  27. Dietrich M, Heinze J, Heywang G, Jonas F (1994) J Electroanal Chem 369:87

    Article  CAS  Google Scholar 

  28. Bobacka J, Lewenstam A, Ivaska A (1993) Talanta 40:1437

    Article  CAS  Google Scholar 

  29. Lebedev MY, Lauritzen MV, Curzon AE, Holdcroft S (1998) Chem Mater 10:156

    Article  CAS  Google Scholar 

  30. Umezawa Y, Umezawa K, Sato H (1995) Pure Appl Chem 67:507

    Article  Google Scholar 

  31. Koryta J, Dvorak J, Kavan L (eds) (1993) Principles of electrochemistry, 2nd ed, Wiley, Chichester, p 38

  32. Hotta S, Rughooputh SDDV, Heeger AJ, Wudl F (1987) Macromolecules 20:212

    Article  CAS  Google Scholar 

  33. Latonen R-M, Kvarnström C, Ivaska A (2001) J Electroanal Chem 512:36

    Article  CAS  Google Scholar 

  34. Manard MJ, Kemper PR, Bowers MT (2005) Int J Mass Spectrom 241:109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Carita Kvarnström for the fruitful discussions. Financial support from the National Technology Agency (TEKES) and the Academy of Finland are gratefully acknowledged. This work is part of the activities at the Åbo Akademi Process Chemistry Centre within the Finnish Centre of Excellence Programme (2000–2005) by the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Bobacka.

Additional information

Presented at the 4th Baltic Conference on Electrochemistry, Greifswald, 13–16, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez, M., Bobacka, J. & Ivaska, A. Potentiometric sensors for Ag+ based on poly(3-octylthiophene) (POT). J Solid State Electrochem 9, 865–873 (2005). https://doi.org/10.1007/s10008-005-0031-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0031-9

Keywords

Navigation