Skip to main content
Log in

Oxygen reduction at the surface of glassy carbon electrodes modified with anthraquinone derivatives and dyes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The preparation, electrochemical and catalytic behaviour of glassy carbon electrodes modified by anthra-9,10-quinone, its amino derivatives and dyes were investigated. The stability of the modified electrodes was studied by cyclic voltammetry in acidic and neutral media. The electrocatalytic ability of the modified electrodes for the reduction of dioxygen to hydrogen peroxide was examined by cyclic voltammetry, chronoamperometry and chronocoulometry techniques. The influence of pH on the electrochemical and catalytic behaviour was studied and pH 5.0–8.0 was chosen as the optimum working pH by comparing the shift in oxygen reduction potential. The anthraquinone-adsorbed glassy carbon electrodes possess excellent electrocatalytic abilities for dioxygen reduction with overpotential ranging from 280 to 560 mV lower than that at a plain glassy carbon electrode. Hydrodynamic voltammetric studies were performed to determine the heterogeneous rate constants for the reduction of O2 at the surface of the modified electrodes, mass specific activity of the anthraquinones used and the apparent diffusion coefficient of O2 in buffered aqueous O2-saturated solutions. Studies showed the involvement of two electrons in dioxygen reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Salimi A, Ghadermazi M (2001) Anal Sci 17:1165

    Article  CAS  PubMed  Google Scholar 

  2. Williams MC (ed) (2000) Fuel cell handbook, 5th edn. US Department of Energy, Washington, pp 1–37

    Google Scholar 

  3. Lai ME, Bergel A (2000) J Electroanal Chem 494:30

    Article  CAS  Google Scholar 

  4. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) J Electroanal Chem 495:134

    Article  CAS  Google Scholar 

  5. Ohde H, Maeda K, Yoshida Y, Kihara S (2000) J Electroanal Chem 483:108

    Article  CAS  Google Scholar 

  6. Shi C, Anson FC (2000) J Electroanal Chem 484:144

    Article  CAS  Google Scholar 

  7. Mao L, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T (2003) Electrochim Acta 48:1015

    Article  CAS  Google Scholar 

  8. Peressini S, Tavagnacco C, Costa G, Amatore C (2002) J Electroanal Chem 532:295

    Article  CAS  Google Scholar 

  9. Vukmirovic MB, Vasiljevic N, Dimitrov N, Sieradzki K (2003) J Electrochem Soc 150 (1):B10–B15

    Article  CAS  Google Scholar 

  10. Gonzalez-Cruz R, Solorza-Feria O (2003) J Solid State Electrochem 7:289

    CAS  Google Scholar 

  11. Ramirez G, Trollund E, Isaacs M, Armijo F, Zagal J, Costamagna J, Aguirre MJ (2002) Electroanalysis 14:540

    CAS  Google Scholar 

  12. Lin AS, Huang JC (2003) J Electroanal Chem 541:147

    CAS  Google Scholar 

  13. Chithra R, Renuka R (2003) J Appl Electrochem 33:443

    Article  CAS  Google Scholar 

  14. Zhang Y, Asahina S, Yoshihara S, Shirakashi T (2003) Electrochim Acta 48:741

    Article  CAS  Google Scholar 

  15. Manisankar P, Mercy Pushpalatha A, Vasanthkumar S, Gomathi A, Viswanathan S (2004) J Electroanal Chem 571:43

    Article  CAS  Google Scholar 

  16. Golabi SM, Raoof JB (1996) J Electroanal Chem 416:75

    CAS  Google Scholar 

  17. Sarapuu A, Vaik K, Schiffrin DJ, Tammeveski K (2003) J Electroanal Chem 541:23

    Article  CAS  Google Scholar 

  18. Tammeveski K, Kontturi K, Nichols RJ, Potter RJ, Schiffrin DJ (2001) J Electroanal Chem 515:101

    Article  CAS  Google Scholar 

  19. Salimi A, Mousavi MF, Sharghi H, Shamsipur M (1999) Bull Chem Soc Jpn 72:2121

    CAS  Google Scholar 

  20. Salimi A, Eshghi H, Sharghi H, Golabi SM, Shamsipur M (1999) Electroanalysis 11:114

    Article  CAS  Google Scholar 

  21. Zon A, Palys M, Stojek Z, Sulowska H, Ossowski T (2003) Electroanalysis 15:579

    Article  CAS  Google Scholar 

  22. Hu SS, Xu CL, Wang GP, Cui DF (2001) Talanta 54:115

    Article  CAS  Google Scholar 

  23. Soriaga MP, Hubbard AT (1982) J Am Chem Soc 104:2735

    Article  CAS  Google Scholar 

  24. He P, Crooks RM, Faulkner LR (1990) J Phys Chem 94:1135

    CAS  Google Scholar 

  25. Zhang J, Anson FC (1992) J Electroanal Chem 331:945

    Article  CAS  Google Scholar 

  26. McDermott MT, Kneten K, McCreery RL (1992) J Phys Chem 96:3124

    Article  CAS  Google Scholar 

  27. Mohan TM, Gomathi H, Rao GP (1990) Bull Electrochem 6:630

    CAS  Google Scholar 

  28. Gomathi H, Rao GP (1985) J Electroanal Chem 85:190

    Google Scholar 

  29. Shiu KK, Song F, Dai HP (1996) Electroanalysis 8:1160

    CAS  Google Scholar 

  30. Shamsipur M, Salimi A, Golabi SM, Sharghi H, Mousavi MF (2001) J Solid State Electrochem 5:68

    Article  CAS  Google Scholar 

  31. Tsujimura S, Tatsumi H, Ogawa J, Shimizu S, Kano K, Ikeda T (2001) J Electroanal Chem 496:69

    CAS  Google Scholar 

  32. Brankovic SR, Wang JX, Adzic RR (2001) Electrochem Solid State Lett 4:A217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Manisankar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manisankar, P., Gomathi, A. & Velayutham, D. Oxygen reduction at the surface of glassy carbon electrodes modified with anthraquinone derivatives and dyes. J Solid State Electrochem 9, 601–608 (2005). https://doi.org/10.1007/s10008-004-0610-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0610-1

Keywords

Navigation