Skip to main content
Log in

Electrooxidation of undiluted organic liquids swelling N-isopropylacrylamide-based copolymers

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polyacrylate gels such as: N-isopropylacrylamide (NIPA), ionic copolymer NIPA-co-sodium acrylate (NIPA-co-SA) and ionic copolymer NIPA-co-[2-(acryloyloxy)ethyl]trimethylammonium chloride (NIPA-co-XCl) were swollen by methanol, ethanol and N,N-dimethylformamide. These solvents were oxidized voltammetrically in the gels at platinum microelectrodes. The blocking coefficients, defined as the ratio of the currents observed in the presence and absence of the polymeric chains, were different for the solvents in the charged and uncharged polymers and did not differ for the electroactive probe, ferrocene, present in the solvents at millimolar level. This may mean that the micro ionic layer that is formed at microelectrodes at the plateau of the voltammetric solvent waves leads to a kind of collapse/phase transition of the polymer in the depletion layer. For methanol, the gel structure was found to prevent occasionally the formation of large gas bubbles at the potentials positive versus the first wave and then three one-electron waves could be obtained. Experiments done with a capillary cell and an optical microscope indicated that before formation of large bubbles at the Pt microelectrode a very dynamic, dense stream of microbubbles leaves the electrode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zieja J, Gadomska-Trzos J, Stojek Z (2001) Electroanalysis 13:621

    Article  CAS  Google Scholar 

  2. Koncka M, Stojek Z (1995) Electroanalysis 7:1010

    CAS  Google Scholar 

  3. Gadomska J, Stojek Z (1998) Electroanalysis 10:1

    Article  Google Scholar 

  4. Ciszkowska M, Stojek Z (1993) J Electroanal Chem 344:135

    Article  CAS  Google Scholar 

  5. Hyk W, Caban K, Donten M, Stojek Z (2001) J Phys Chem B 105:6943

    Article  CAS  Google Scholar 

  6. Malmsten RA, Smith CP, White HS(1986) J Electroanal Chem 215:223

    Article  CAS  Google Scholar 

  7. Caban K, Donten M, Stojek Z (2004) J Phys Chem 108:1153

    Article  CAS  Google Scholar 

  8. McCarley RA, Morita M, Wilbourn KO, Murray RW (1988) J Electroanal Chem 245:321

    Article  CAS  Google Scholar 

  9. Morris RB, Fischer KF, White HS (1988) J Phys Chem 92:5306

    CAS  Google Scholar 

  10. Ragsdale SR, Lee SR, Gao XP, White HS (1996) J Phys Chem 100:5913

    Article  CAS  Google Scholar 

  11. Caban K, Donten M, Kudelski A, Stojek Z (2003) Electrochem Commun 5:412

    Article  CAS  Google Scholar 

  12. Angel CA, Sanchez E (1993) Nature 362:137

    Article  Google Scholar 

  13. Fan J, Angel CA (1995) Electrochim Acta 40:2397

    Article  CAS  Google Scholar 

  14. Xu K, Day ND, Angel CA (1996) J Electrochem Soc 143:L209

    CAS  Google Scholar 

  15. Fuller J, Breda AC, Carlin RT (1997) J Electrochem Soc 144:L67

    CAS  Google Scholar 

  16. Holtz JH, Asher SA (1997) Nature 389:829

    Article  CAS  PubMed  Google Scholar 

  17. Holtz JH, Holtz JSW, Asher SA (1998) Anal Chem 70:780

    Article  CAS  Google Scholar 

  18. Carlin RT, Fuller J, (1997) Chem Commun 15:1345

    Article  Google Scholar 

  19. Harland RS, Prud’homme RK (1992) Polielectrolyte gels properties, preparation, applications. American Chemical Society, Washington

  20. Annaka M, Tanaka T (1992) Nature 355:30

    Article  Google Scholar 

  21. Ogawa K, Nakayama A, Kokufuta E (2003) Langmuir 19:3178

    Article  CAS  Google Scholar 

  22. Hirotsu S, Hirokawa Y, Tanaka T (1987) J Chem Phys 87(2):15

    Article  Google Scholar 

  23. Kato E, (1997) J Chem Phys 106:1

    Article  Google Scholar 

  24. Ricka J, Tanaka T (1984) Nature 17:2916

    CAS  Google Scholar 

  25. Suzuki A, Tanaka T (1990) Macromolecules 26:346

    Google Scholar 

  26. Dagani R (1997) Chem Eng News 75:26

    Google Scholar 

  27. Dusek K, Patterson D (1968) J Polym Sci Part A-2 6:1209

    Google Scholar 

  28. Annaka M, Sugiyama M, Kasai M, Nakahira T, Matsuura T, Seki H, Aoyagi T, Okano T (2002) Langmuir 18:7377

    Article  CAS  Google Scholar 

  29. Fan FRF (1998) J Phys Chem B 102:9777

    Article  CAS  Google Scholar 

  30. Hyk W, Ciszkowska M (1999) J Phys Chem B 103:6466

    Article  CAS  Google Scholar 

  31. Ma Ch, Zhang W, Ciszkowska M (2001) J Phys Chem B 105:10446

    Article  CAS  Google Scholar 

  32. Hyk W, Ciszkowska M (2000) J Electrochem Soc 147 (6):2268

    Google Scholar 

  33. Hyk W, Ciszkowska M (2002) J Phys Chem 106:11469

    Article  CAS  Google Scholar 

  34. Hyk W, Karbarz M, Stojek Z, Ciszkowska M (2004) J Phys Chem B 108:864

    Article  CAS  Google Scholar 

  35. Shibayama M, Fujikawa Y, Nomura S (1996) Macromolecules 29:6535

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The polymers were synthesized by Marcin Karbarz. The research was partially supported by Grant 3T09A 08727 from the Ministry of Scientific Research and Information Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Stojek.

Additional information

Dedicated to Zbigniew Galus on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bak, E., Romiszewski, J., Donten, M. et al. Electrooxidation of undiluted organic liquids swelling N-isopropylacrylamide-based copolymers. J Solid State Electrochem 8, 861–867 (2004). https://doi.org/10.1007/s10008-004-0554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0554-5

Keywords

Navigation