Skip to main content
Log in

Cellulose-precursor synthesis of nanocrystalline Ce0.8Gd0.2O2−δ for SOFC anodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Developments of intermediate-temperature solid oxide fuel cells (IT SOFCs) require novel anode materials with a high electrochemical activity at 800–1070 K. The polarization of cermet anodes, made of nickel, ceria and yttria-stabilized zirconia (YSZ) and applied onto a YSZ solid electrolyte, can be significantly reduced by catalytically active ceria additions, the relative role of which increases with decreasing temperature. Further improvement is observed when using Ce0.8Gd0.2O2−δ (CGO) having a high oxygen ionic conductivity instead of undoped ceria, owing to enlargement of the electrochemical reaction zone. Nanocrystalline CGO powders with grain sizes of 8–35 nm were thus synthesized via the cellulose-precursor technique and introduced into Ni–CGO–YSZ cermets, and tested in contact with a (La0.9Sr0.1)0.98Ga0.8Mg0.2O3−δ (LSGM) electrolyte at 873–1073 K. The results showed that the anode performance can be enhanced by additional surface activation, in particular by impregnation with a Ce-containing solution, and also by incorporation of YSZ, which probably acts as a cermet-stabilizing component. The overpotential of the surface-modified Ni–CGO (25 wt%–75 wt%) anode in a 10% H2/90% N2 atmosphere was approximately 110 mV at 1073 K with a current density of 200 mA/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yamamoto O (2000) Electrochim Acta 45:2423

    CAS  Google Scholar 

  2. Huijsmans JPP (2001) Curr Opin Solid State Mater Sci 5:317

    Article  CAS  Google Scholar 

  3. Ishihara T, Shibayama T, Nishiguchi H, Takita Y (2000) Solid State Ionics 132:209

    Article  CAS  Google Scholar 

  4. Watanabe M, Uchida H, Yoshida M (1997) J Electrochem Soc 144:1739

    CAS  Google Scholar 

  5. Huang K, Heng M, Goodenough JB (1997) J Electrochem Soc 144:3620

    CAS  Google Scholar 

  6. Huijsmans JPP, Berkel FPF, Christie GM (1998) J Power Sources 71:107

    Article  CAS  Google Scholar 

  7. Kharton VV, Naumovich EN, Tikhonovich VN, Bashmakov IA, Boginsky LS, Kovalevsky AV (1999) J Power Sources 77:242

    Article  Google Scholar 

  8. Marina OA, Bagger C, Primdahl S, Mogensen M (1999) Solid State Ionics 123:199

    Article  CAS  Google Scholar 

  9. Simwonis D, Tietz F, Stöver D (2000) Solid State Ionics 132:241

    Article  CAS  Google Scholar 

  10. Tuller HL (2000) Solid State Ionics 131:143

    Article  CAS  Google Scholar 

  11. Tschope A (2001) Solid State Ionics 139:267

    Article  CAS  Google Scholar 

  12. Kharton VV, Marques FMB (2002) Curr Opin Solid State Mater Sci 6:261

    Article  CAS  Google Scholar 

  13. Christie GM, van Berkel FPF (1996) Solid State Ionics 83:17

    Article  CAS  Google Scholar 

  14. Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR (2001) J Mater Sci 36:1105

    Article  CAS  Google Scholar 

  15. Kharton VV, Viskup AP, Figueiredo FM, Naumovich EN, Yaremchenko AA, Marques FMB (2001) Electrochim Acta 46:2879

    Article  CAS  Google Scholar 

  16. Fagg DP, Abrantes JCC, Perez-Coll D, Nunez P, Kharton VV, Frade JR (2003) Electrochim Acta 48:1023

    Google Scholar 

  17. Kharton VV, Viskup AP, Figueiredo FM, Naumovich EN, Shaulo AL, Marques FMB (2002) Mater Lett 53:160

    Article  CAS  Google Scholar 

  18. Kharton VV, Tikhonovich VN, Shuangbao Li, Naumovich EN, Kovalevsky AV, Viskup AP, Bashmakov IA, Yaremchenko AA (1998) J Electrochem Soc 145:1363

    CAS  Google Scholar 

  19. Kharton VV, Figueiredo FM, Kovalevsky AV, Viskup AP, Naumovich EN, Yaremchenko AA, Bashmakov IA, Marques FMB (2001) J Eur Ceram Soc 21:2301

    Article  CAS  Google Scholar 

  20. Rodriguez-Carvajal J (1993) Physica B 192:55

    CAS  Google Scholar 

  21. Mizusaki J, Tagawa H (1994) J Electrochem Soc 141:1674

    CAS  Google Scholar 

  22. Figueiredo FM, Frade J, Marques FMB (1999) Bol Soc Esp Ceram Vidrio 38:639

    Google Scholar 

  23. Mogensen M, Sammes NM, Tompsett GA (2000) Solid State Ionics 129:63

    Article  CAS  Google Scholar 

  24. Kharton VV, Naumovich EN, Vecher AA (1999) J Solid State Electrochem 3:61

    Article  CAS  Google Scholar 

  25. Brown M, Primdahl S, Mogensen M (2000) J Electrochem Soc 147:475

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the FCT, Portugal (projects POCTI/CTM/3938/2001 and BD/6827/2001), by the NATO Science for Peace program (project 978002), and by the Belarus Ministry of Education. Experimental assistance of L.V. Solov’eva, A.A. Yaremchenko and N.P. Vyshatko is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Tsipis.

Additional information

Presented at the OSSEP Workshop “Ionic and Mixed Conductors: Methods and Processes”, Aveiro, Portugal, 10–12 April 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsipis, E.V., Kharton, V.V., Bashmakov, I.A. et al. Cellulose-precursor synthesis of nanocrystalline Ce0.8Gd0.2O2−δ for SOFC anodes. J Solid State Electrochem 8, 674–680 (2004). https://doi.org/10.1007/s10008-004-0507-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0507-z

Keywords

Navigation