Advertisement

Journal of Solid State Electrochemistry

, Volume 8, Issue 11, pp 908–913 | Cite as

Lithium insertion into chemically etched multi-walled carbon nanotubes

  • Heon-Cheol Shin
  • Meilin Liu
  • B. Sadanadan
  • Apparao M. Rao
Original Paper

Abstract

Lithium insertion (deinsertion) into (from) chemically etched multi-walled carbon nanotubes (c-MWNTs) has been investigated using various electrochemical techniques such as chronopotentiometry, chronoamperometry, and electrochemical impedance spectroscopy. The results indicate that not only the reversible capacity but also the rate capability was improved by a chemical etching (shortening) of the nanotubes. The observed enhancement in capability at high-rate lithium insertion/deinsertion is attributed to the increased electrochemically active area and reduced lithium diffusion length along the nanotubes, resulting from the structural defects and open ends of the c-MWNTs.

Keywords

Carbon nanotube Chemical etching Lithium battery Rate capability 

Notes

Acknowledgements

This work was supported by the Office of Science, Department of Energy, under grant no. DE-FG02-01ER15220. The authors are grateful to Dr Jian Dong for his HRTEM observations of the nanotubes. One of the authors (H.C.S.) would also like to acknowledge the partial support by the Post-doctoral Fellowship Program of the Korea Science & Engineering Foundation (KOSEF). A.M.R. acknowledges support for this work from a grant through the NSF grant 0132573 and ERC-NSF award no. EEC-9731680.

References

  1. 1.
    Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Carbon 37:61Google Scholar
  2. 2.
    Gao B, Kleinhammes A, Tang XP, Bower C, Fleming L, Wu Y, Zhou O (1999) Chem Phys Lett 307:153Google Scholar
  3. 3.
    Wu GT, Wang CS, Zhang XB, Yang HS, Qi ZF, He PM, Li WZ (1999) J Electrochem Soc 146:1696Google Scholar
  4. 4.
    Gao B, Bower C, Lorentzen JD, Fleming L, Kleinhammes A, Tang XP, McNeil LE, Wu Y, Zhou O (2000) Chem Phys Lett 327:69CrossRefGoogle Scholar
  5. 5.
    Claye AS, Fischer JE, Huffman CB, Rinzler AG, Smalley RE (2000) J Electrochem Soc 147:2845Google Scholar
  6. 6.
    Claye AS, Fischer JE (2000) Mol Cryst Liq Cryst 340:743Google Scholar
  7. 7.
    Mukhopadhyay I, Hoshino N, Kawasaki S, Okino F, Hsu WK, Touhara H (2002) J Electrochem Soc 149:A39CrossRefGoogle Scholar
  8. 8.
    Shimoda H, Gao B, Tang XP, Kleinhammes A, Fleming L, Wu Y, Zhou O (2002) Physica B 323:133CrossRefGoogle Scholar
  9. 9.
    Shimoda H, Gao B, Tang XP, Kleinhammes A, Fleming L, Wu Y, Zhou O (2002) Phys Rev Lett 88:015502CrossRefPubMedGoogle Scholar
  10. 10.
    Wang Q, Li H, Chen L, Huang X, Zhong D, Wang E (2003) J Electrochem Soc 150:A1281CrossRefGoogle Scholar
  11. 11.
    Yang Z, Li Z, Wu H, Simard B (2003) Mater Lett 57:3160CrossRefGoogle Scholar
  12. 12.
    Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X, Dickey EC, Chen J (1999) Chem Phys Lett 303:467CrossRefGoogle Scholar
  13. 13.
    Shin HC, Liu M, Sadanadan B, Rao AM (2002) J Power Sources 112:216CrossRefGoogle Scholar
  14. 14.
    Maurin G, Bousquet Ch, Henn F, Bernier P, Almairac R, Simon B (1999) Chem Phys Lett 312:14Google Scholar
  15. 15.
    Kar T, Pattanayak J, Scheiner S (2001) J Phys Chem A 105:10397CrossRefGoogle Scholar
  16. 16.
    Meunier V, Kephart J, Roland C, Bernholc J (2002) Phys Rev Lett 88:075506CrossRefPubMedGoogle Scholar
  17. 17.
    Lu KL, Lago RN, Chen YK, Green MLH, Harris PJF, Tsang SC (1996) Carbon 34:814CrossRefGoogle Scholar
  18. 18.
    Aurbach D, Ein-Eli Y (1995) J Electrochem Soc 142:1746Google Scholar
  19. 19.
    Matsumura Y, Wang S, Mondori J (1995) J Electrochem Soc 142:2914Google Scholar
  20. 20.
    Flandrois S, Simon B (1999) Carbon 37:165CrossRefGoogle Scholar
  21. 21.
    Winter M, Besenhard JO, Spahr ME, Novak P (1998) Adv Mater 10:725CrossRefGoogle Scholar
  22. 22.
    Ong TS, Yang H (2002) J Electrochem Soc 149:A1CrossRefGoogle Scholar
  23. 23.
    Wang GX, Ahn JH, Yao J, Lindsay M, Liu HK, Dou SX (2003) J Power Sources 119:16CrossRefGoogle Scholar
  24. 24.
    Montella C (2002) J Electroanal Chem 518:61CrossRefGoogle Scholar
  25. 25.
    Shin HC, Pyun SI (2002) Mechanisms of lithium transport through transition metal oxides and carbonaceous materials. In: White RE, Conway BE, Vayenas CG (eds) Modern aspects of electrochemistry, vol. 36. Plenum Press, New York, pp 255–301Google Scholar
  26. 26.
    Herstedt M, Fransson L, Edstrom K (2003) J Power Sources 124:191CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Heon-Cheol Shin
    • 1
  • Meilin Liu
    • 1
  • B. Sadanadan
    • 2
  • Apparao M. Rao
    • 2
  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Kinard Laboratory of PhysicsClemson UniversityClemsonUSA

Personalised recommendations