Skip to main content
Log in

Electroless preparation and electrochemical behavior of a platinum-doped nickel hexacyanoferrate film–zinc modified electrode: catalytic ability of the electrode for electrooxidation of methanol

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The use of a zinc substrate as an electrode and the modification of its surface by means of a thin film of platinum-doped nickel hexacyanoferrate (Pt-NiHCF) were developed. The modification conditions of the zinc surface including the electroless deposition of metallic nickel on the electrode surface from NiCl2 solution, chemical derivatization of the deposited nickel to the NiHCF film in 0.5 M K3[Fe(CN)6] solution, and electrochemical penetration of metallic platinum into the modified film are described. The modified zinc electrodes prepared under optimum conditions show a well-defined redox couple due to the [NiIIFeIII/II(CN)6]1−/2− system. The effects of pH, the alkali metal cation, and the anion of the supporting electrolyte on the electrochemical characteristics of the modified electrode were studied in detail. The diffusion coefficients of hydrated alkali metal cations in the film (D), the transfer coefficient (α), and the transfer rate constant for the electron (k s) were calculated in the presence of some alkali metal cations. The electrocatalytic activity of the modified electrode for methanol oxidation was demonstrated. The stability of the modified electrode under various experimental conditions was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Itaya K, Akahoshi H, Toshima S (1982) J Electrochem Soc 129:1498

    CAS  Google Scholar 

  2. Cai C, Ju H, Chen H (1995) Anal Chim Acta 310:145

    CAS  Google Scholar 

  3. Cai C, Ju H, Chen H (1995) J Electroanal Chem 397:185

    CAS  Google Scholar 

  4. Bocarsly AB, Sinha S (1982) J Electroanal Chem 140:167

    CAS  Google Scholar 

  5. Lin C, Bocarsly AB (1991) J Electroanal Chem 300:325

    CAS  Google Scholar 

  6. Gao Z, Wang G, Li P, Zhao Z (1991) Electrochim Acta 36:147

    CAS  Google Scholar 

  7. Arent DJ, Hidalgo-Luangdilok C, Chun JKM, Bocarsly AB (1992) J Electroanal Chem 328:295

    Article  CAS  Google Scholar 

  8. Pournaghi-Azar MH, Razmi-Nerbin H (1998) J Electroanal Chem 456:83

    CAS  Google Scholar 

  9. Pournaghi-Azar MH, Razmi-Nerbin H (2000) Electroanal 12:209

    CAS  Google Scholar 

  10. Bharathi S, Yegnaraman V, Rao GP (1995) Langmuir 11:666

    CAS  Google Scholar 

  11. Xu J, Wang G, Chen H (2000) Anal Sci 16:231

    Google Scholar 

  12. Dostal A, Meyer B, Scholz F, Schroder U, Bond AM, Marken F, Shaw SJ (1995) J Phys Chem 99:2096

    CAS  Google Scholar 

  13. Reddy SJ, Dostal A, Scholz F(1996) J Electroanal Chem 403:209

    Article  Google Scholar 

  14. Ikeda O, Yoneyama H (1989) J Electroanal Chem 265:323

    CAS  Google Scholar 

  15. Pournaghi-Azar MH, Razmi-Nerbin H (2000) J Electroanal Chem 488:17

    CAS  Google Scholar 

  16. Pournaghi-Azar MH, Razmi-Nerbin H (2001) Electroanal 13:465

    Article  CAS  Google Scholar 

  17. Razmi-Nerbin H, Pournaghi-Azar MH (2002) J Solid State Electrochem 6:126

    Article  CAS  Google Scholar 

  18. Pournaghi-Azar MH, Dastangoo H (2002) J Electroanal Chem 523:26

    Article  CAS  Google Scholar 

  19. Inzelt G (1990) J Electroanal Chem 287:171

    Article  CAS  Google Scholar 

  20. Bacskai J, Martinusz K, Czirok E, Inzelt G, Kulesza PJ, Malik MA (1995) J Electroanal Chem 385:241

    Article  CAS  Google Scholar 

  21. Laviron E (1979) J Electroanal Chem 101:19

    CAS  Google Scholar 

  22. Dong S, Jin Z (1989) Electrochim Acta 34:963

    CAS  Google Scholar 

  23. Ohsaka T, Okajima T, Oyama N (1986) J Electroanal Chem 215:191

    CAS  Google Scholar 

  24. Laviron E (1979) J Electroanal Chem 100:263

    Article  CAS  Google Scholar 

  25. Sinha S, Humphrey BD, Bocarsly AB (1984) Inorg Chem 23:203

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Pournaghi-Azar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pournaghi-Azar, M.H., Nahalparvari, H. Electroless preparation and electrochemical behavior of a platinum-doped nickel hexacyanoferrate film–zinc modified electrode: catalytic ability of the electrode for electrooxidation of methanol. J Solid State Electrochem 8, 550–557 (2004). https://doi.org/10.1007/s10008-004-0496-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0496-y

Keywords

Navigation