Skip to main content
Log in

Highly stable Pt–Ru/C as an anode catalyst for use in polymer electrolyte fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new method for preparing highly stable Pt–Ru/C catalysts at low temperature is reported. Pt–Ru supported on high surface carbon was prepared from Pt(NH3)4Cl2, RuNO(NO3) x (OH) y and borohydride as a reducing agent. Simultaneous reduction of both metals was done by heat treatment and small and homogeneously dispersed catalyst particles were obtained with increased stability, as observed from solubility tests. Catalysis, XRD and TG data gave clear evidence of the different chemical states between the material produced and the commercially available sample. The electrochemical measurements showed that the novel catalysts have a performance similar to that of E-Tek samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10

Similar content being viewed by others

References

  1. Oetjen HF, Schmidt VM, Stimming U, Trila F (1996) J Electrochem Soc 143:3838

    CAS  Google Scholar 

  2. Gasteiger A, Markovic N, Ross PN, Cairns EJ (1994) J Phys Chem 98:617

    CAS  Google Scholar 

  3. Gasteiger A, Markovic N, Ross PN (1995) J Phys Chem 99:16757

    CAS  Google Scholar 

  4. Lamy C, Lima A, Le Rhun V, Delime F, Coutanceau C, Leger JM (2002) J Power Sources 105:283

    Article  CAS  Google Scholar 

  5. Luna AMC, Camara GA, Paganin VA, Ticianelli EA, Gonzalez ER (2000) Electrochem Commun 2:222

    Article  CAS  Google Scholar 

  6. Bönnemann H, Brinkmann R, Britz P, Endruschat U, Mörtel R, Paulus UA, Feldmeyer GJ, Schmidt TJ, Gasteiger HA, Behm RJ (2000) J New Mater Electrochem Syst 3:199

    Google Scholar 

  7. Schmidt TJ, Gasteiger HA, Behm RJ (1999) Electrochem Commun 1:1

    Article  CAS  Google Scholar 

  8. Watanabe M, Uchida M, Motoo S (1987) J Electroanal Chem 229:395

    Article  CAS  Google Scholar 

  9. Mukerjee S, Lee SJ, Ticianelli EA, McBreen J, Grgur BN, Markovic NM, Ross PN, Giallombardo JR, De Castro ES (1999) Electrochem Solid State Lett 2(1):12

    Article  CAS  Google Scholar 

  10. Ioroi T, Fujiwara N, Siroma Z, Yasuda K, Miyazaki Y (2002) Electrochem Commun 4:442

    Article  CAS  Google Scholar 

  11. Giorgi L, Antolini E, Pozio A, Passalacqua E (1998) Electrochim Acta 43:3675

    Article  CAS  Google Scholar 

  12. Okada T, Ayato Y, Yuasa M, Sekine I (1999) J Phys Chem B 103:3315

    Article  CAS  Google Scholar 

  13. Okada T, Ayato Y, Satou H, Yuasa M, Sekine I (2001) J Phys Chem B 105:6980

    Article  CAS  Google Scholar 

  14. Pozio A, Silva RF, De Francesco M, Cardellini F, Giorgi L (2003) Electrochim Acta 48:1627

    Article  Google Scholar 

  15. Pozio A, De Francesco M, Cemmi A, Cardellini F, Giorgi L (2002) J Power Sources 105:13

    Article  CAS  Google Scholar 

  16. Pozio A, Giorgi L, De Francesco M, Silva RF, Lo Presti R, Danzi A (2002) J Power Sources 112:491

    Article  CAS  Google Scholar 

  17. Ayres G, Young F (1951) Anal Chem 23:299

    CAS  Google Scholar 

  18. Ayres G, Young F (1950) Anal Chem 22/10:1277

    Google Scholar 

  19. Bracchini C, Indovina V, De Rossi S, Giorgi L (2000) Catal Today 55:45

    Article  CAS  Google Scholar 

  20. Giorgi L, Pozio A, Bracchini C, Giorgi R, Turtù S (2001) J Appl Electrochem 31:325

    Article  CAS  Google Scholar 

  21. Rolison DR, Hagans PL, Swider KE, Long JW (1999) Langmuir 15:774

    Article  CAS  Google Scholar 

  22. Aricò AS, Cretì P, Modica E, Manforte G, Baglio V, Antonucci V (2000) Electrochim Acta 45:4319

    Article  Google Scholar 

  23. Radmilovic V, Gasteiger HA, Ross Jr PN (1995) J Catal 154:98

    Article  CAS  Google Scholar 

  24. Lasch K, Hayn G, Jorissen L, Garche J, Besenhardt O (2002) J Power Sources 105:305

    Article  CAS  Google Scholar 

  25. Chunzi H, Kunz HR, Fenton JM (1997) J Electrochem Soc 144:970

    Google Scholar 

  26. Coelho AA, Cheary RW (1996) X-ray line profile fitting program. School of Physical Sciences, University of Technology, Sydney, Australia

  27. Massalski TB (1986) Binary alloy phase diagrams, vol 2. American Society for Metals

  28. Lalande G, Denis MC, Dodelet JP, Schulz R (1999) J Alloys Compd 292:301

    Article  CAS  Google Scholar 

  29. Pearson WB (1956) Handbook of lattice spacing and structures of metals and alloys. Pergamon, London

  30. Gasteiger HA, Ross Jr PN, Cairns EJ (1993) Surf Sci 293:67

    Article  CAS  Google Scholar 

  31. Martelli S, Di Nunzio PE (2001) Proceedings from the 6th Italian Meeting on Nanophase Materials, Rome, Italy

  32. Mukerjee S, Urian RC (2002) Electrochim Acta 47:3219

    Article  CAS  Google Scholar 

  33. Shukla AK, Aricò AS, El-Khatib KM, Kim H, Antonucci PL, Antonucci V (1999) Appl Surf Sci 137:20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian University and Scientific Research Ministry (MIUR). The authors thank Dr. M. Carewska (ENEA) for the TG analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pozio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, R.F., Francesco, M.D., Giorgi, L. et al. Highly stable Pt–Ru/C as an anode catalyst for use in polymer electrolyte fuel cells. J Solid State Electrochem 8, 544–549 (2004). https://doi.org/10.1007/s10008-003-0482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-003-0482-9

Keywords

Navigation