Journal of Solid State Electrochemistry

, Volume 7, Issue 9, pp 588–592 | Cite as

NEMCA effect: why are the work function changes of the gas exposed catalyst-electrode surface one-to-one related to the changes in the catalyst working electrode potential?

Article

Abstract

In the present work, an important point concerning the NEMCA effect is addressed. We analyse the reasons why the changes in the work function Φ of the gas exposed catalyst-electrode surface are one to one related to the changes in the catalyst working electrode potential E with respect to a reference electrode. It is concluded that this is due to the unique properties of the catalyst/solid electrolyte interface: the structure of the double layer in this region is very different from that in liquid electrolytes, being the potential difference at this interface mainly determined by the specific adsorption of the mobile species in the solid electrolyte.

Keywords

NEMCA Work function Catalyst Electrochemical promotion 

Notes

Acknowledgements

We thank CONICET, Agencia Cordoba Ciencia, Secyt UNC and Program BID 1201/OC-AR PICT No 06-04505 for financial support. Language assistance by Karina Plasencia is gratefully acknowledged.

References

  1. 1.
    Vayenas CG, Neophytides SG (1996) In: Catalysis, vol 12. Royal Society of Chemistry, London, pp 199–253Google Scholar
  2. 2.
    Vayenas CG, Jaksik MM, Bebelis S, Neophytides SG (1996) In: Bockris JGM, Conway BE, White RE (eds), Modern aspects of electrochemistry, vol 29. Plenum, New York, pp 57–202Google Scholar
  3. 3.
    Vayenas CG, Yentekakis LV (1997) In: Ertl G, Knotzinger H, Weitcamp J (eds), Handbook of catalysis. VCH, Weinheim, pp 1310–1338Google Scholar
  4. 4.
    Williams FJ, Aldao CM (1999) Surface Sci 425:L387CrossRefGoogle Scholar
  5. 5.
    Vayenas CG, Tsiplakides D (2000) Surface Sci 467:23CrossRefGoogle Scholar
  6. 6.
    Vayenas CG (2000) J Electroanal Chem 486:85CrossRefGoogle Scholar
  7. 7.
    Parsons R (2000) J Electroanal Chem 486:91CrossRefGoogle Scholar
  8. 8.
    Trasatti S (1982) J Electroanal Chem 139:1CrossRefGoogle Scholar
  9. 9.
    Trasatti S (1990) Electrochim Acta 35:269CrossRefGoogle Scholar
  10. 10.
    West AR (1992) Solid state chemistry and its applications. Wiley, East Kilbride, ScotlandGoogle Scholar
  11. 11.
    Vayenas CG, Bebelis S, Yentekakis V, Lintz H-G (1992) Catal Today 11:303CrossRefGoogle Scholar
  12. 12.
    Lang ND (1971) Phys Rev B 4:4234CrossRefGoogle Scholar
  13. 13.
    Hansen WN, Kolb DM (1979) J Electroanal Chem 100:493CrossRefGoogle Scholar
  14. 14.
    Hansen WN (1983) J Electroanal Chem 150:133CrossRefGoogle Scholar
  15. 15.
    Katz ER, Neff H, Miller K (1986) J Electroanal Chem 215:331CrossRefGoogle Scholar
  16. 16.
    Same Z, Johnson BW, Doblhofer K (1992) Surface Sci 264:440CrossRefGoogle Scholar
  17. 17.
    Tsiplakides D, Vayenas CG (2001) J Electrochem Soc 148:E189CrossRefGoogle Scholar
  18. 18.
    Tsiplakides D, Vayenas CG (2002) Solid State lonics 152/153:625Google Scholar
  19. 19.
    Riess I, Vayenas CG (2003) Solid State lonics 159:313CrossRefGoogle Scholar
  20. 20.
    Vayenas CG, Brosda S, Pliangos C (2003) J Catal (in press)Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Atomistic Simulation Group, School of Mathematics and PhysicsQueen's University BelfastBelfastUnited Kingdom

Personalised recommendations