Skip to main content

Healing at implants installed from ~ 70- to < 10-Ncm insertion torques: an experimental study in dogs

Abstract

Objective

To evaluate histologically the early healing at implants installed with different insertion torques

Material and methods

Three months after the extraction of the mandibular premolars and of the first molars, two implants were installed monolaterally in the premolar and two in the molar regions of the edentulous alveolar ridge of twelve dogs. The recipient sites were prepared using drills of different diameter to obtain insertion torque of different values, i.e., 30 Ncm (control) or ~ 70 Ncm (test) in the premolar region, and < 10 Ncm (test) or ~ 50 Ncm (control) in the molar region. Six animals were euthanized after 4 weeks and six after 8 weeks of healing. Histological analyses were performed, and the Wilcoxon test was applied for statistical analyses.

Results

After 4 weeks of healing, in the premolar region, the new bone in contact with the implant surface was 65.0 ± 4.6% and 53.9 ± 13.5% at the ~ 30-Ncm and ~ 70-Ncm sites, respectively (p = 0.075). In the premolar region, new bone proportions were 51.4 ± 17.0% and 67.3 ± 7.0% at the < 10-Ncm and ~ 50-Ncm sites, respectively (p = 0.046). After 8 weeks of healing, in the premolar region, new bone reached fractions of 77.7 ± 16.2% at the ~ 30-Ncm sites, and 68.3 ± 12.1% at the ~ 70-Ncm sites (p = 0.028). In the molar region, new bone presented proportions of 70.2 ± 6.4% at the < 10-Ncm sites and 76.2 ± 9.4% at the ~ 50-Ncm sites (p = 0.173).

Conclusions

The insertion torque influenced the osseointegration of implants. Higher values of bone-to-implant contact percentages were registered for insertion torques of ~ 30 Ncm and ~ 50 Ncm. Implants inserted with torque < 10 Ncm became integrated with an optimal osseointegration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Gallucci GO, Benic GI, Eckert SE et al (2014) Consensus statements and clinical recommendations for implant loading protocols. Int J Oral Maxillofac Implants 29(Suppl):287–290. https://doi.org/10.11607/jomi.2013.g4

    Article  PubMed  Google Scholar 

  2. Galli F, Capelli M, Zuffetti F, Testori T, Esposito M (2008) Immediate non-occlusal vs. early loading of dental implants in partially edentulous patients: a multicentre randomized clinical trial. Peri-implant bone and soft-tissue levels. Clin Oral Implants Res 19(6):546–552. https://doi.org/10.1111/j.1600-0501.2008.01530.x

    Article  PubMed  Google Scholar 

  3. Cesaretti G, Botticelli D, Renzi A, Rossi M, Rossi R, Lang NP (2016) Radiographic evaluation of immediately loaded implants supporting 2-3 units fixed bridges in the posterior maxilla: a 3-year follow-up prospective randomized controlled multicenter clinical study. Clin Oral Implants Res 27(4):399–405. https://doi.org/10.1111/clr.12565

    Article  PubMed  Google Scholar 

  4. Ivanoff CJ, Sennerby L, Lekholm U (1996) Influence of initial implant mobility on the integration of titanium implants. An experimental study in rabbits. Clin Oral Implants Res 7(2):120–127. https://doi.org/10.1034/j.1600-0501.1996.070205.x

    Article  CAS  PubMed  Google Scholar 

  5. Pantani F, Botticelli D, Garcia IR Jr, Salata LA, Borges GJ, Lang NP (2010) Influence of lateral pressure to the implant bed on osseointegration: an experimental study in dogs. Clin Oral Implants Res 21(11):1264–1270. https://doi.org/10.1111/j.1600-0501.2010.01941.x

    Article  PubMed  Google Scholar 

  6. Rea M, Botticelli D, Ricci S, Soldini C, González GG, Lang NP (2015) Influence of immediate loading on healing of implants installed with different insertion torques--an experimental study in dogs. Clin Oral Implants Res 26(1):90–95. https://doi.org/10.1111/clr.12305

    Article  PubMed  Google Scholar 

  7. Rea M, Lang NP, Ricci S, Mintrone F, González González G, Botticelli D (2015) Healing of implants installed in over- or under-prepared sites--an experimental study in dogs. Clin Oral Implants Res 26(4):442–446. https://doi.org/10.1111/clr.12390

    Article  PubMed  Google Scholar 

  8. Trisi P, Todisco M, Consolo U, Travaglini D (2011) High versus low implant insertion torque: a histologic, histomorphometric, and biomechanical study in the sheep mandible. Int J Oral Maxillofac Implants 26:837–849

    PubMed  Google Scholar 

  9. Khayat PG, Arnal HM, Tourbah BI, Sennerby L (2013) Clinical outcome of dental implants placed with high insertion torques (up to 176 Ncm). Clin Implant Dent Relat Res 15(2):227–233. https://doi.org/10.1111/j.1708-8208.2011.00351.x

    Article  PubMed  Google Scholar 

  10. Brunski JB (1988) The influence of force, motion, and related quantities on the response of bone to implants. In: Fitzgerald R Jr (ed) Non cemented total hip arthroplasty. Raven Press, New York, p 43

    Google Scholar 

  11. Søballe K, Brockstedt-Rasmussen H, Hansen ES, Bünger C (1992) Hydroxyapatite coating modifies implant membrane formation. Controlled micromotion studied in dogs. Acta Orthop Scand 63(2):128–140

    Article  Google Scholar 

  12. Amari Y, Piattelli A, Apaza Alccayhuaman KA, Mesa NF, Ferri M, Iezzi G, Botticelli D (2019) Bone healing at non-submerged implants installed with different insertion torques: a split-mouth histomorphometric randomized controlled trial. Int J Implant Dent 5(1):39. https://doi.org/10.1186/s40729-019-0194-2

    Article  PubMed  PubMed Central  Google Scholar 

  13. Norton MR (2017) The influence of low insertion torque on primary stability, implant survival, and maintenance of marginal bone levels: a closed-cohort prospective study. Int J Oral Maxillofac Implants 32(4):849–857. https://doi.org/10.11607/jomi.5889

    Article  PubMed  Google Scholar 

  14. Rodrigo D, Aracil L, Martin C, Sanz M (2010) Diagnosis of implant stability and its impact on implant survival: a prospective case series study. Clin Oral Implants Res 21(3):255–261. https://doi.org/10.1111/j.1600-0501.2009.01820.x

    Article  PubMed  Google Scholar 

  15. Rossi F, Lang NP, Ricci E, Ferraioli L, Marchetti C, Botticelli D (2015) Early loading of 6-mm-short implants with a moderately rough surface supporting single crowns--a prospective 5-year cohort study. Clin Oral Implants Res 26(4):471–477. https://doi.org/10.1111/clr.12409

    Article  PubMed  Google Scholar 

  16. Rossi F, Botticelli D, Cesaretti G, De Santis E, Storelli S, Lang NP (2016) Use of short implants (6 mm) in a single-tooth replacement: a 5-year follow-up prospective randomized controlled multicenter clinical study. Clin Oral Implants Res 27(4):458–464. https://doi.org/10.1111/clr.12564

    Article  PubMed  Google Scholar 

  17. Rossi F, Lang NP, Ricci E, Ferraioli L, Baldi N, Botticelli D (2018) Long-term follow-up of single crowns supported by short, moderately rough implants-a prospective 10-year cohort study. Clin Oral Implants Res 29(12):1212–1219. https://doi.org/10.1111/clr.13386

    Article  PubMed  Google Scholar 

  18. Abuhussein H, Pagni G, Rebaudi A, Wang HL (2010) The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res 21(2):129–136. https://doi.org/10.1111/j.1600-0501.2009.01800.x

    Article  PubMed  Google Scholar 

  19. Atieh MA, Alsabeeha N, Duncan WJ (2018) Stability of tapered and parallel-walled dental implants: a systematic review and meta-analysis. Clin Implant Dent Relat Res 20(4):634–645. https://doi.org/10.1111/cid.12623

    Article  Google Scholar 

  20. Alshehri M, Alshehri F (2016) Influence of implant shape (tapered vs cylindrical) on the survival of dental implants placed in the posterior maxilla: a systematic review. Implant Dent 25(6):855–860. https://doi.org/10.1097/ID.0000000000000490

    Article  PubMed  Google Scholar 

  21. Stocchero M, Toia M, Cecchinato D, Becktor JP, Coelho PG, Jimbo R (2016) Biomechanical, biologic, and clinical outcomes of undersized implant surgical preparation: a systematic review. Int J Oral Maxillofac Implants 31(6):1247–1263. https://doi.org/10.11607/jomi.5340

    Article  PubMed  Google Scholar 

  22. Coelho PG, Marin C, Teixeira HS, Campos FE, Gomes JB, Guastaldi F, Anchieta RB, Silveira L, Bonfante EA (2013) Biomechanical evaluation of undersized drilling on implant biomechanical stability at early implantation times. J Oral Maxillofac Surg 71(2):e69–e75. https://doi.org/10.1016/j.joms.2012.10.008

    Article  PubMed  Google Scholar 

  23. Marin C, Bonfante E, Granato R, Neiva R, Gil LF, Marão HF, Suzuki M, Coelho PG (2016) The effect of osteotomy dimension on implant insertion torque, healing mode, and osseointegration indicators: a study in dogs. Implant Dent 25(6):739–743. https://doi.org/10.1097/ID.0000000000000476

    Article  PubMed  Google Scholar 

  24. Caneva M, Lang NP, Calvo Guirado JL, Spriano S, Iezzi G, Botticelli D (2015) Bone healing at bicortically installed implants with different surface configurations. An experimental study in rabbits. Clin Oral Implants Res 26(3):293–299. https://doi.org/10.1111/clr.12475

    Article  PubMed  Google Scholar 

  25. Beolchini M, Lang NP, Gómez Moreno G, Iezzi G, Botticelli D, Calvo Guirado JL (2016) Bone healing at implants with different surface configurations: an experimental study in dogs. Clin Oral Implants Res 27(2):196–202. https://doi.org/10.1111/clr.12562

    Article  PubMed  Google Scholar 

  26. Russell WMS, Burch RL (1959) The principles of human experimental technique. Methuen, London

    Google Scholar 

  27. Stavropoulos A, Cochran D, Obrecht M, Pippenger BE, Dard M (2016) Effect of osteotomy preparation on osseointegration of immediately loaded, tapered dental implants. Adv Dent Res 28(1):34–41. https://doi.org/10.1177/0022034515624446

    Article  CAS  PubMed  Google Scholar 

  28. Berardini M, Trisi P, Sinjari B, Rutjes AW, Caputi S (2016) The effects of high insertion torque versus low insertion torque on marginal bone resorption and implant failure rates: a systematic review with meta-analyses. Implant Dent 25(4):532–540. https://doi.org/10.1097/ID.0000000000000422

    Article  PubMed  Google Scholar 

  29. Balshi SF, Wolfinger GJ, Balshi TJ (2007) A retrospective analysis of 44 implants with no rotational primary stability used for fixed prosthesis anchorage. Int J Oral Maxillofac Implants 22(3):467–471

    PubMed  Google Scholar 

  30. Roccuzzo M, Bunino M, Prioglio F, Bianchi SD (2001) Early loading of sandblasted and acid-etched (SLA) implants: a prospective split-mouth comparative study. Clin Oral Implants Res 12:572–578. https://doi.org/10.1034/j.1600-0501.2001.120604.x

    Article  CAS  PubMed  Google Scholar 

  31. Salvi GE, Gallini G, Lang NP (2004) Early loading (2 or 6 weeks) of sandblasted and acid-etched (SLA) ITI implants in the posterior mandible. A 1-year randomized controlled clinical trial. Clin Oral Implants Res 15:142–149. https://doi.org/10.1111/j.1600-0501.2004.01014.x

    Article  PubMed  Google Scholar 

  32. Botticelli D, Lang NP (2017) Dynamics of osseointegration in various human and animal models-a comparative analysis. Clin Oral Implants Res 28(6):742–748. https://doi.org/10.1111/clr.12872

    Article  PubMed  Google Scholar 

  33. Norton MR (2011) The influence of insertion torque on the survival of immediately placed and restored single-tooth implants. Int J Oral Maxillofac Implants 26(6):1333–1343

    PubMed  Google Scholar 

  34. Li H, Liang Y, Zheng Q (2015) Meta-analysis of correlations between marginal bone resorption and high insertion torque of dental implants. Int J Oral Maxillofac Implants 30(4):767–772. https://doi.org/10.11607/jomi.3884

    Article  PubMed  Google Scholar 

  35. Barone A, Alfonsi F, Derchi G, Tonelli P, Toti P, Marchionni S, Covani U (2016) The effect of insertion torque on the clinical outcome of single implants: a randomized clinical trial. Clin Implant Dent Relat Res 18(3):588–600. https://doi.org/10.1111/cid.12337

    Article  PubMed  Google Scholar 

  36. Aldahlawi S, Demeter A, Irinakis T (2018) The effect of implant placement torque on crestal bone remodeling after 1 year of loading. Clin Cosmet Investig Dent 10:203–209. Published 2018 Oct 9. https://doi.org/10.2147/CCIDE.S174895

    Article  PubMed  PubMed Central  Google Scholar 

  37. Marconcini S, Giammarinaro E, Toti P, Alfonsi F, Covani U, Barone A (2018) Longitudinal analysis on the effect of insertion torque on delayed single implants: a 3-year randomized clinical study. Clin Implant Dent Relat Res 20(3):322–332. https://doi.org/10.1111/cid.12586

    Article  PubMed  Google Scholar 

Download references

Funding

The experiment was economically supported by Sweden & Martina, Due Carrare, PD, Italy, and by ARDEC Academy, Rimini, Italy. The implants were provided free of charge by Sweden & Martina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Botticelli.

Ethics declarations

The protocol was approved by the Ethical Committee of the University of Medical Science, Faculty of Dentistry, Havana, Cuba (No. 01/2016 and No. 01/2016; November 23, 2016). The ARRIVE checklist for animal studies was followed. The international rules for animal experiments were rigorously adopted.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 662 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kotsu, M., Urbizo Velez, J., Bengazi, F. et al. Healing at implants installed from ~ 70- to < 10-Ncm insertion torques: an experimental study in dogs. Oral Maxillofac Surg 25, 55–64 (2021). https://doi.org/10.1007/s10006-020-00890-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-020-00890-3

Keywords

  • Animal experiments
  • Dental implant
  • Histology
  • Insertion torque
  • Osseointegration
  • Osteotomy