Abstract
Objective
To evaluate histologically the early healing at implants installed with different insertion torques
Material and methods
Three months after the extraction of the mandibular premolars and of the first molars, two implants were installed monolaterally in the premolar and two in the molar regions of the edentulous alveolar ridge of twelve dogs. The recipient sites were prepared using drills of different diameter to obtain insertion torque of different values, i.e., 30 Ncm (control) or ~ 70 Ncm (test) in the premolar region, and < 10 Ncm (test) or ~ 50 Ncm (control) in the molar region. Six animals were euthanized after 4 weeks and six after 8 weeks of healing. Histological analyses were performed, and the Wilcoxon test was applied for statistical analyses.
Results
After 4 weeks of healing, in the premolar region, the new bone in contact with the implant surface was 65.0 ± 4.6% and 53.9 ± 13.5% at the ~ 30-Ncm and ~ 70-Ncm sites, respectively (p = 0.075). In the premolar region, new bone proportions were 51.4 ± 17.0% and 67.3 ± 7.0% at the < 10-Ncm and ~ 50-Ncm sites, respectively (p = 0.046). After 8 weeks of healing, in the premolar region, new bone reached fractions of 77.7 ± 16.2% at the ~ 30-Ncm sites, and 68.3 ± 12.1% at the ~ 70-Ncm sites (p = 0.028). In the molar region, new bone presented proportions of 70.2 ± 6.4% at the < 10-Ncm sites and 76.2 ± 9.4% at the ~ 50-Ncm sites (p = 0.173).
Conclusions
The insertion torque influenced the osseointegration of implants. Higher values of bone-to-implant contact percentages were registered for insertion torques of ~ 30 Ncm and ~ 50 Ncm. Implants inserted with torque < 10 Ncm became integrated with an optimal osseointegration.
This is a preview of subscription content, access via your institution.






References
Gallucci GO, Benic GI, Eckert SE et al (2014) Consensus statements and clinical recommendations for implant loading protocols. Int J Oral Maxillofac Implants 29(Suppl):287–290. https://doi.org/10.11607/jomi.2013.g4
Galli F, Capelli M, Zuffetti F, Testori T, Esposito M (2008) Immediate non-occlusal vs. early loading of dental implants in partially edentulous patients: a multicentre randomized clinical trial. Peri-implant bone and soft-tissue levels. Clin Oral Implants Res 19(6):546–552. https://doi.org/10.1111/j.1600-0501.2008.01530.x
Cesaretti G, Botticelli D, Renzi A, Rossi M, Rossi R, Lang NP (2016) Radiographic evaluation of immediately loaded implants supporting 2-3 units fixed bridges in the posterior maxilla: a 3-year follow-up prospective randomized controlled multicenter clinical study. Clin Oral Implants Res 27(4):399–405. https://doi.org/10.1111/clr.12565
Ivanoff CJ, Sennerby L, Lekholm U (1996) Influence of initial implant mobility on the integration of titanium implants. An experimental study in rabbits. Clin Oral Implants Res 7(2):120–127. https://doi.org/10.1034/j.1600-0501.1996.070205.x
Pantani F, Botticelli D, Garcia IR Jr, Salata LA, Borges GJ, Lang NP (2010) Influence of lateral pressure to the implant bed on osseointegration: an experimental study in dogs. Clin Oral Implants Res 21(11):1264–1270. https://doi.org/10.1111/j.1600-0501.2010.01941.x
Rea M, Botticelli D, Ricci S, Soldini C, González GG, Lang NP (2015) Influence of immediate loading on healing of implants installed with different insertion torques--an experimental study in dogs. Clin Oral Implants Res 26(1):90–95. https://doi.org/10.1111/clr.12305
Rea M, Lang NP, Ricci S, Mintrone F, González González G, Botticelli D (2015) Healing of implants installed in over- or under-prepared sites--an experimental study in dogs. Clin Oral Implants Res 26(4):442–446. https://doi.org/10.1111/clr.12390
Trisi P, Todisco M, Consolo U, Travaglini D (2011) High versus low implant insertion torque: a histologic, histomorphometric, and biomechanical study in the sheep mandible. Int J Oral Maxillofac Implants 26:837–849
Khayat PG, Arnal HM, Tourbah BI, Sennerby L (2013) Clinical outcome of dental implants placed with high insertion torques (up to 176 Ncm). Clin Implant Dent Relat Res 15(2):227–233. https://doi.org/10.1111/j.1708-8208.2011.00351.x
Brunski JB (1988) The influence of force, motion, and related quantities on the response of bone to implants. In: Fitzgerald R Jr (ed) Non cemented total hip arthroplasty. Raven Press, New York, p 43
Søballe K, Brockstedt-Rasmussen H, Hansen ES, Bünger C (1992) Hydroxyapatite coating modifies implant membrane formation. Controlled micromotion studied in dogs. Acta Orthop Scand 63(2):128–140
Amari Y, Piattelli A, Apaza Alccayhuaman KA, Mesa NF, Ferri M, Iezzi G, Botticelli D (2019) Bone healing at non-submerged implants installed with different insertion torques: a split-mouth histomorphometric randomized controlled trial. Int J Implant Dent 5(1):39. https://doi.org/10.1186/s40729-019-0194-2
Norton MR (2017) The influence of low insertion torque on primary stability, implant survival, and maintenance of marginal bone levels: a closed-cohort prospective study. Int J Oral Maxillofac Implants 32(4):849–857. https://doi.org/10.11607/jomi.5889
Rodrigo D, Aracil L, Martin C, Sanz M (2010) Diagnosis of implant stability and its impact on implant survival: a prospective case series study. Clin Oral Implants Res 21(3):255–261. https://doi.org/10.1111/j.1600-0501.2009.01820.x
Rossi F, Lang NP, Ricci E, Ferraioli L, Marchetti C, Botticelli D (2015) Early loading of 6-mm-short implants with a moderately rough surface supporting single crowns--a prospective 5-year cohort study. Clin Oral Implants Res 26(4):471–477. https://doi.org/10.1111/clr.12409
Rossi F, Botticelli D, Cesaretti G, De Santis E, Storelli S, Lang NP (2016) Use of short implants (6 mm) in a single-tooth replacement: a 5-year follow-up prospective randomized controlled multicenter clinical study. Clin Oral Implants Res 27(4):458–464. https://doi.org/10.1111/clr.12564
Rossi F, Lang NP, Ricci E, Ferraioli L, Baldi N, Botticelli D (2018) Long-term follow-up of single crowns supported by short, moderately rough implants-a prospective 10-year cohort study. Clin Oral Implants Res 29(12):1212–1219. https://doi.org/10.1111/clr.13386
Abuhussein H, Pagni G, Rebaudi A, Wang HL (2010) The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res 21(2):129–136. https://doi.org/10.1111/j.1600-0501.2009.01800.x
Atieh MA, Alsabeeha N, Duncan WJ (2018) Stability of tapered and parallel-walled dental implants: a systematic review and meta-analysis. Clin Implant Dent Relat Res 20(4):634–645. https://doi.org/10.1111/cid.12623
Alshehri M, Alshehri F (2016) Influence of implant shape (tapered vs cylindrical) on the survival of dental implants placed in the posterior maxilla: a systematic review. Implant Dent 25(6):855–860. https://doi.org/10.1097/ID.0000000000000490
Stocchero M, Toia M, Cecchinato D, Becktor JP, Coelho PG, Jimbo R (2016) Biomechanical, biologic, and clinical outcomes of undersized implant surgical preparation: a systematic review. Int J Oral Maxillofac Implants 31(6):1247–1263. https://doi.org/10.11607/jomi.5340
Coelho PG, Marin C, Teixeira HS, Campos FE, Gomes JB, Guastaldi F, Anchieta RB, Silveira L, Bonfante EA (2013) Biomechanical evaluation of undersized drilling on implant biomechanical stability at early implantation times. J Oral Maxillofac Surg 71(2):e69–e75. https://doi.org/10.1016/j.joms.2012.10.008
Marin C, Bonfante E, Granato R, Neiva R, Gil LF, Marão HF, Suzuki M, Coelho PG (2016) The effect of osteotomy dimension on implant insertion torque, healing mode, and osseointegration indicators: a study in dogs. Implant Dent 25(6):739–743. https://doi.org/10.1097/ID.0000000000000476
Caneva M, Lang NP, Calvo Guirado JL, Spriano S, Iezzi G, Botticelli D (2015) Bone healing at bicortically installed implants with different surface configurations. An experimental study in rabbits. Clin Oral Implants Res 26(3):293–299. https://doi.org/10.1111/clr.12475
Beolchini M, Lang NP, Gómez Moreno G, Iezzi G, Botticelli D, Calvo Guirado JL (2016) Bone healing at implants with different surface configurations: an experimental study in dogs. Clin Oral Implants Res 27(2):196–202. https://doi.org/10.1111/clr.12562
Russell WMS, Burch RL (1959) The principles of human experimental technique. Methuen, London
Stavropoulos A, Cochran D, Obrecht M, Pippenger BE, Dard M (2016) Effect of osteotomy preparation on osseointegration of immediately loaded, tapered dental implants. Adv Dent Res 28(1):34–41. https://doi.org/10.1177/0022034515624446
Berardini M, Trisi P, Sinjari B, Rutjes AW, Caputi S (2016) The effects of high insertion torque versus low insertion torque on marginal bone resorption and implant failure rates: a systematic review with meta-analyses. Implant Dent 25(4):532–540. https://doi.org/10.1097/ID.0000000000000422
Balshi SF, Wolfinger GJ, Balshi TJ (2007) A retrospective analysis of 44 implants with no rotational primary stability used for fixed prosthesis anchorage. Int J Oral Maxillofac Implants 22(3):467–471
Roccuzzo M, Bunino M, Prioglio F, Bianchi SD (2001) Early loading of sandblasted and acid-etched (SLA) implants: a prospective split-mouth comparative study. Clin Oral Implants Res 12:572–578. https://doi.org/10.1034/j.1600-0501.2001.120604.x
Salvi GE, Gallini G, Lang NP (2004) Early loading (2 or 6 weeks) of sandblasted and acid-etched (SLA) ITI implants in the posterior mandible. A 1-year randomized controlled clinical trial. Clin Oral Implants Res 15:142–149. https://doi.org/10.1111/j.1600-0501.2004.01014.x
Botticelli D, Lang NP (2017) Dynamics of osseointegration in various human and animal models-a comparative analysis. Clin Oral Implants Res 28(6):742–748. https://doi.org/10.1111/clr.12872
Norton MR (2011) The influence of insertion torque on the survival of immediately placed and restored single-tooth implants. Int J Oral Maxillofac Implants 26(6):1333–1343
Li H, Liang Y, Zheng Q (2015) Meta-analysis of correlations between marginal bone resorption and high insertion torque of dental implants. Int J Oral Maxillofac Implants 30(4):767–772. https://doi.org/10.11607/jomi.3884
Barone A, Alfonsi F, Derchi G, Tonelli P, Toti P, Marchionni S, Covani U (2016) The effect of insertion torque on the clinical outcome of single implants: a randomized clinical trial. Clin Implant Dent Relat Res 18(3):588–600. https://doi.org/10.1111/cid.12337
Aldahlawi S, Demeter A, Irinakis T (2018) The effect of implant placement torque on crestal bone remodeling after 1 year of loading. Clin Cosmet Investig Dent 10:203–209. Published 2018 Oct 9. https://doi.org/10.2147/CCIDE.S174895
Marconcini S, Giammarinaro E, Toti P, Alfonsi F, Covani U, Barone A (2018) Longitudinal analysis on the effect of insertion torque on delayed single implants: a 3-year randomized clinical study. Clin Implant Dent Relat Res 20(3):322–332. https://doi.org/10.1111/cid.12586
Funding
The experiment was economically supported by Sweden & Martina, Due Carrare, PD, Italy, and by ARDEC Academy, Rimini, Italy. The implants were provided free of charge by Sweden & Martina.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The protocol was approved by the Ethical Committee of the University of Medical Science, Faculty of Dentistry, Havana, Cuba (No. 01/2016 and No. 01/2016; November 23, 2016). The ARRIVE checklist for animal studies was followed. The international rules for animal experiments were rigorously adopted.
Conflict of interest
The authors declare that they have no conflicts of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOCX 662 kb)
Rights and permissions
About this article
Cite this article
Kotsu, M., Urbizo Velez, J., Bengazi, F. et al. Healing at implants installed from ~ 70- to < 10-Ncm insertion torques: an experimental study in dogs. Oral Maxillofac Surg 25, 55–64 (2021). https://doi.org/10.1007/s10006-020-00890-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10006-020-00890-3
Keywords
- Animal experiments
- Dental implant
- Histology
- Insertion torque
- Osseointegration
- Osteotomy