Skip to main content
Log in

Weichteilinfektionen in der Mund-, Kiefer- und Plastischen Gesichtschirurgie

Keimspektren und Antibiotika

Soft tissue infections in oral, maxillofacial, and plastic surgery

Bacterial spectra and antibiotics

  • Originalien
  • Published:
Mund-, Kiefer- und Gesichtschirurgie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die bei Weichteilinfektionen in der Mund-, Kiefer und Plastischen Gesichtschirurgie zu erwartenden Keimspektren umfassen neben Staphylococcus aureus, Pseudomonas aeruginosa sowie Escherichia coli auch die Erregergattungen Enterococcus, Klebsiella und Enterobacter.

Methode

Die vorliegende prospektive Studie erfasst die aktuellen Keimspektren und die Resistenzquoten gegenüber in der Mund-, Kiefer- und Plastischen Gesichtschirurgie etablierten Antibiotika bei 96 Patienten mit nichtodontogenen postoperativen Weichteilinfektionen.

Ergebnisse

Die dominierenden Erregergattungen waren Streptococcus (25% der Isolate), Staphylococcus (24% der Isolate) und Vertreter der Familie der Enterobacteriaceae (10% der Isolate). Bei Wundinfektionen mit enoraler Eintrittspforte fanden sich zusätzlich Anaerobier (Peptostreptococcus, Eubacterium, Prevotella und Fusobacterium). Es zeigten sich folgende Resistenzquoten: Penicillin G und Doxycyclin jeweils 36%, Ampicillin 42%. Gegen Erythromycin und Clindamycin waren 26% bzw. 7% der getesteten Erreger resistent. Keine resistenten Stämme fanden sich bei Vancomycin und Teicoplanin. Im anaeroben Bereich allein bestätigte sich die aus regionaler Sicht bekannte hohe antimikrobielle Wirksamkeit von Penicillinen wie auch die der meisten anderen gängigen Antibiotika.

Schlussfolgerung

Das im Gegensatz zu den odontogenen Infektionen völlig andere Keimspektrum mit entsprechend veränderter antibiotischer Effektivität sollte nach Möglichkeit gezielt nach Erregeranzucht und Differenzierung antibiotisch behandelt werden. Als Antibiotika der Wahl empfehlen sich neben Imipenem und Meropenem auch Ciprofloxacin und Cefotiam. Mögliche Alternativen sind in der Zukunft mit Sicherheit in Form der neuen Generation der Fluorchinolone zu sehen.

Abstract

Background

Soft tissue infections in the maxillofacial region are mainly caused by Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli but also by members of the genera Enterococcus, Klebsiella, and Enterobacter, respectively.

Methods

In a prospective study 96 patients with severe maxillofacial non-odontogenic postoperative soft tissue infections were analyzed with regard to the bacterial spectrum and resistance patterns against antibiotics. The dominating bacteria were Streptococci (25% of the isolates) and Staphylococci (24% of the isolates). In addition, members of Enterobacteriaceae were isolated in approximately 10% of the cases. The most frequent anaerobes found were as follows: Peptostreptococcus, Eubacterium, Prevotella and Fusobacterium.

Results

The resistance rates against antibiotics found were: penicillin G 36%, ampicillin 42%, and doxycycline 36%. In addition, the resistance rate against erythromycin and clindamycin was 26% and 7%, respectively. No resistant strains were detected against vancomycin and teicoplanin. All anaerobes showed a low antimicrobial resistance as previously described for odontogenic infections.

Conclusion

In summary, soft tissue infections in the maxillofacial region present a different spectrum of bacteria in contrast to the well-investigated odontogenic infections. Antibiotic administration should be, whenever possible, performed after differentiation of involved strains and resistogram. The most promising antibiotics are imipenem, meropenem, and ciprofloxacin as well as cefotiam. Modern fluoroquinolones will be the antibiotics of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Afzal-Shah M, Woodford N, Livermore DM (2001) Characterization of OXA-25, OXA-26, and OXA-27, molecular class D beta-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumanii. Antimicrob Agents Chemother 45: 583–588

    Article  PubMed  Google Scholar 

  2. Alam MR, Hershberger E, Zervos MJ (2002) The role of fluoroquinolones in the treatment of skin and soft tissue infections. Curr Infect Dis Rep 4: 426–432

    PubMed  Google Scholar 

  3. Al-Nawas B, Grötz A, Brahm R, Maeurer M, Wagner W (2000) Infektionen im Mund-, Kiefer- und Gesichtsbereich: Was hat sich in den letzten 25 Jahren geändert? Dtsch Zahnärztl Z 55: 765–769

  4. Blahova J, Hupkova-Lesnicka M, Kralikova K et al. (1998) Further studies of transferable antibiotic resistance in strains of Pseudomonas aeruginosa from four clinical settings in three countries. J Chemother 10: 215–220

    PubMed  Google Scholar 

  5. Blondeau JM (2002)The role of fluoroquinolones in skin and skin structure infections. Am J Clin Dermatol 3: 37–46

    PubMed  Google Scholar 

  6. Bouza E, Cercenado E (2002) Klebsiella and Enterobacter: antibiotic resistance and treatment implications. Semin Respir Infect 17: 215–230

    Article  PubMed  Google Scholar 

  7. Bruckner DA, Colonna P (1997) Nomenclature for aerobic and facultative bacteria. Clin Infect Dis 25: 1–10

    PubMed  Google Scholar 

  8. Budjakova H, Hanzen J, Janikovicova Set al. (2001) Occurence and transferability of beta-lactam resistance in Enterobacteriaceae isolated in Children’s University Hospital in Bratislava. Folia Microbiol 46: 339–344

    Google Scholar 

  9. Burckhardt F (1992) Mikrobiologische Diagnostik. Thieme, Stuttgart

  10. Das I, Lambert P, Hill D, Noy M, Bion J, Elliott T (2002) Carbapenem-resistant Acinetobacter and role of curtains in an outbreak in intensive care units. J Hosp Infect 50: 110–114

    Article  PubMed  Google Scholar 

  11. Echeverria MJ, Lopez de Goicoechea MJ, Ayarza R et al. (1997) In vitro activity against of 9 antibiotics and 3 beta-lactamase inhibitors against 107 clinical isolates of Acinetobacter baumanii. Enferm Infecc Microbiol Clin 15: 319–322

    PubMed  Google Scholar 

  12. Eckert AW (2002) Prospektive Untersuchungen zum Erregerspektrum und zur Resistenzsituation bei odontogenen Weichteilinfektionen. ZN 4: 31–32

    Google Scholar 

  13. Eckert AW, Höhne C, Schubert J (2000) Erregerspektrum und Resistenzsituation bei rein anaeroben odontogenen Infektionen. Mund Kiefer GesichtsChir 4: 153–158

    Article  PubMed  Google Scholar 

  14. Ferrara A, Dos Santos C, Cimbro M (1998) Effect of different beta-lactams in combination with beta-lactamase inhibitors in the presence or absence of tobramycin against some Enterobacteriaceae producing extended-spectrum beta-lactamases. Chemotherapy 44: 313–317

    Article  PubMed  Google Scholar 

  15. Folwaczny M, Hickel R (2002) Orale Infektionen bei Patienten mit Immunsuppression. Dtsch Zahnärztl Z 57: 455–461

    Google Scholar 

  16. Gales AC, Jones RN, Forward KR, Linares J, Sader HS, Verhoef J (2001) Emerging importance of multidrug-resistant Acinetobacter species and Stenotrophomonas maltophilia as pathogens in seriously ill patients: geographic patterns, epidemiological features. and trends in the SENTRY Antimicrobial Surveillance Program (1997–1999). Clin Infect Dis 15 (Suppl 2): 104–113

    Article  Google Scholar 

  17. Hancock RE (1998) Resistance mechanisms in Pseudomonas aeruginosa and other non-fermentative gram-negative bacteria. Clin Infect Dis 27 (Suppl1): 93–99

    PubMed  Google Scholar 

  18. Henwood CJ, Gatward T, Warner M et al. (2002) Antibiotic resistance among clinical isolates of Acinetobacter in the UK, and in vitro evaluation of tigecycline (GAR-936). J Antimicrob Chemother 49: 479–487

    Article  PubMed  Google Scholar 

  19. Höhne C, Schubert J, Eckert A (1997) Spectrum of anaerobes found in materials from intraoral abscesses yielding only anaerobes. Rev Medical Microbiol 8 (Suppl 1): 19

    Google Scholar 

  20. Hotz G, Singer R (1985) Antibiotika-Anwendung im Rahmen der zahnärztlichen Praxis. ZWR 94: 962–967

    PubMed  Google Scholar 

  21. Jousimies-Somer H, Summanen P (1997) Microbiology terminology update: clinically significant anaerobic gram-positive and gram-negative bacteria (excluding spirochetes). Clin Infect Dis 25: 11–14

    PubMed  Google Scholar 

  22. Karlowsky JA, Kelly LJ, Thornsberry C, Jones ME, Evangelista AT, Critchley IA, Sahm DF (2002) Susceptibility to fluoroquinolones among commonly isolated Gram-negative bacilli in 2000: TRUST and TSN data for United States. Tracking Resistance in the United States Today. The Surveillance Network. Int J Antimicrob Agents 19: 21–31

    Article  PubMed  Google Scholar 

  23. Kirby JT, Mutnick AH, Jones RN, Biedenbach DJ, Pfaller MA (2002) Geographic variations in garenoxacin (BMS284756) activity tested against pathogens associated with skin and soft tissue infections: report from the SENTRY Antimicrobial Surveillance Program (2000). Diagn Microbiol Infect Dis 43: 303–309

    Article  PubMed  Google Scholar 

  24. Krause R, Mittermayer H, Feierl G, Allerberger F, Wendelin I, Hirschl A, Reisinger EC (1999) In vitro activity of newer broad spectrum beta-lactam antibiotics against Enterobacteriaceae and non-fermenters: a report from Austrian intensive care units. Austrian Carbapenem Susceptibility Surveillance Group. Wien Klin Wochenschr 111: 549–554

    PubMed  Google Scholar 

  25. Lausova A, Bujdakova H, Kettner M (1997) Beta-Lactam antibiotics — mechanisms of action and resistance in Enterobacteriaceae. Epidemiol Microbiol Immunol 46: 73–80

    Google Scholar 

  26. Levenstein-Van Hall MA, Paauw A, Box AT, Blok HE, Verhoef J, Fluit AC (2002) Presence of integron-associated resistance in the community is widespread and contributes to multidrug resistance in the hospital. J Clin Microbiol 40: 3038–3040

    Article  PubMed  Google Scholar 

  27. Murdoch DA (1998) Gram-positive anaerobic cocci. Clin Microbiol Rev 11: 81–120

    PubMed  Google Scholar 

  28. Navarro Risueno F, Miro CE, Mirelis OB (2002) Interpretative reading of the antibiogram of enterobacteria. Enferm Infecc Microbiol Clin 20: 225–234

    PubMed  Google Scholar 

  29. Osterblad M, Pensala O, Peterzens M, Heleiusc H, Huovinen P (1999) Antimicrobial susceptibility of Enterobacteriaceae isolated from vegetables. J Antimicrob Chemother 43: 503–509

    Article  PubMed  Google Scholar 

  30. Piddock LJ, Walters RN, Jin YF, Turner HL, Gascoyne-Binzi DM, Hawkey PM (1997) Prevalence and mechanism of resistance to „third generation“ cephalosporins in clinically relevant isolates of Enterobacteriaceae from 43 hospitals in the UK, 1990–1991. J Antimicrob Chemother 39: 177–187

    Article  PubMed  Google Scholar 

  31. Ruef Ch (2002) Significance of antibiotic resistance in treatment of soft tissue infections. Ther Umsch 59: 41–45

    PubMed  Google Scholar 

  32. Sader HS, Jones RN, Silva JB (2002) Skin and soft tissue infections in Latin American medical centers: four-year assessment of the pathogen frequency and antimicrobial susceptibility patterns. Diagn Microbiol Infect Dis 44: 281–288

    Article  PubMed  Google Scholar 

  33. Sahm DF, Critchley IA, Kelly LJ et al. (2001) Evaluation of current activities of fluoroquinolones against gram-negative bacilli using centralized in vitro testing and electronic surveillance. Antimicrob Agents Chemother 45: 267–274

    Article  PubMed  Google Scholar 

  34. Silva GJ da, Correia M, Vital C et al. (2002) Molecular characterization of bla(IMP-5), a new integron-borne metallo-beta-lactamase gene from an Acinetobacter baumanii nosocomial isolate in Portugal. FEMS Microbiol Lett 24: 33–39

    Article  Google Scholar 

  35. Simon C, Stille W (1985) Antibiotikatherapie in Klinik und Praxis, 3. Aufl. Schattauer, Stuttgart

  36. Spanu T, Luzzaro F, Perilli M, Amicosante G, Toniolo A, Fadda G (2002) Occurrence of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae in Italy: implications for resistance to beta-lactams and other antimicrobial drugs. Antimicrob Agents Chemother 46:196–202

    Article  PubMed  Google Scholar 

  37. Summanen P, Baron EJ, Citron DM, Strong C, Wexler HM, Finegold SM (1993) Wadsworth anaerobic bacteriology manual. Star Publishing, Los Angeles

  38. Süssmuth RD (2003) Glykopeptidantibiotika und bakterielle Resistenz. Nachrichten aus der Chemie 51: 1247–1250

    Google Scholar 

  39. Verma A, Desai N, Shannon K, Philipott-Howard J, Hill RL (2001) Intra- and intergeneric plasmid-mediated spread of cephalosporin andaminiglycoside resistance amongst Klebsiella aerogenes K41 and other enterobacteria. Int J Antimicrob Agents 17: 123–129

    Article  PubMed  Google Scholar 

  40. Vogel F, Scholz H (2002) Rationaler Einsatz oraler Antibiotika bei Erwachsenen. Chemother J 11: 47–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. Eckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckert, A.W., Maurer, P., Wilhelms, D. et al. Weichteilinfektionen in der Mund-, Kiefer- und Plastischen Gesichtschirurgie. Mund Kiefer GesichtsChir 9, 389–395 (2005). https://doi.org/10.1007/s10006-005-0645-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-005-0645-1

Schlüsselwörter

Keywords

Navigation