Skip to main content
Log in

Exploring the effects of mono-bromination on hole-electron transport and distribution in dibenzofuran and dibenzothiophene isomers: a first-principles study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

This study delves into hole-electron transport and distribution properties inherent in mono-brominated dibenzofuran (DBF) and dibenzothiophene (DBT) isomers. As determined by frontier molecular orbitals, all brominated structures have narrower bandgaps than their primary structures. The TD-DFT calculation showed that 2BDBT had the highest absorption wavelength of all molecules at 315.35 nm. Notably, the study unveils remarkably low electron and hole reorganization energies due to bromine substitution in DBF and DBT molecules. Specifically, the 4BDBF has the lowest hole reorganization energy of all DBF configurations, 0.229 eV. In addition, 3BDBF has 0.226 eV less electron reorganization energy than all other molecules. Compared to DBT, 3BDBT has the lowest electron reorganization energy of 0.254 eV. Overall, this research sheds significant light on the fundamental electronic and hole transport characteristics of bromine-substituted DBF and DBT isomers, highlighting their promising role in polymer design as donors/acceptors for advanced organic electronic applications.

Methods

Molecular structures were optimized using Density Functional Theory (DFT) B3LYP/6-311 +  + G (d, p) level of theory, and the study further elucidates these molecules’ energy levels and absorption spectra through Time-Dependent Density Functional Theory TD-DFT; these calculations were performed using Gaussian 09W software package. The key parameters such as reorganization energies, Electron Localization Function map, Laplacian Bond Order, and NCI-RDG were meticulously examined for the molecules with the results of DFT calculations were analyzed and displayed by utilizing the software packages VMD 1.9.4 and Multiwfn 3.8, aiming to comprehend their charge transport and distribution properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Bronstein H, Nielsen CB, Schroeder BC, McCulloch I (2020) The role of chemical design in the performance of organic semiconductors. Nat Rev Chem 4:66–77. https://doi.org/10.1038/s41570-019-0152-9

    Article  CAS  PubMed  Google Scholar 

  2. Fahlman M, Fabiano S, Gueskine V, Simon D, Berggren M, Crispin X (2019) Interfaces in organic electronics. Nat Rev Mater 4:627–650. https://doi.org/10.1038/s41578-019-0127-y

    Article  CAS  Google Scholar 

  3. Chen F-C (2018) Organic semiconductors, in: Encyclopedia of modern optics, Elsevier pp. 220–231. https://doi.org/10.1016/B978-0-12-803581-8.09538-2

  4. Scholz R (2005) Organic semiconductors. In: Encyclopedia of condensed matter physics, Elsevier, pp 206–221. https://doi.org/10.1016/B0-12-369401-9/00658-6

  5. Mortimer RJ, Dyer AL, Reynolds JR (2006) Electrochromic organic and polymeric materials for display applications. Displays 27:2–18. https://doi.org/10.1016/j.displa.2005.03.003

    Article  CAS  Google Scholar 

  6. Zhao X, Chaudhry ST, Mei J (2017) Heterocyclic building blocks for organic semiconductors, pp 133–171. https://doi.org/10.1016/bs.aihch.2016.04.009

  7. Zhang H, Su Q, Chen S (2020) Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission. Nat Commun 11:2826. https://doi.org/10.1038/s41467-020-16659-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kelley TW, Baude PF, Gerlach C, Ender DE, Muyres D, Haase MA, Vogel DE, Theiss SD (2004) Recent progress in organic electronics: materials, devices, and processes. Chem Mater 16:4413–4422. https://doi.org/10.1021/cm049614j

    Article  CAS  Google Scholar 

  9. Yan C-C, Wang X-D, Liao L-S (2020) Organic lasers harnessing excited state intramolecular proton transfer process. ACS Photonics 7:1355–1366. https://doi.org/10.1021/acsphotonics.0c00407

    Article  CAS  Google Scholar 

  10. Lee MY, Lee HR, Park CH, Han SG, Oh JH (2018) Organic transistor-based chemical sensors for wearable bioelectronics. Acc Chem Res 51:2829–2838. https://doi.org/10.1021/acs.accounts.8b00465

    Article  CAS  PubMed  Google Scholar 

  11. Abdurahman A, Hele TJH, Gu Q, Zhang J, Peng Q, Zhang M, Friend RH, Li F, Evans EW (2020) Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes. Nat Mater 19:1224–1229. https://doi.org/10.1038/s41563-020-0705-9

    Article  CAS  PubMed  Google Scholar 

  12. Sun B, Zhu C-H, Liu Y, Wang C, Wan L-J, Wang D (2017) Oriented covalent organic framework film on graphene for robust ambipolar vertical organic field-effect transistor. Chem Mater 29:4367–4374. https://doi.org/10.1021/acs.chemmater.7b00800

    Article  CAS  Google Scholar 

  13. Naeem N, Shehzad RA, Ans M, Akhter MS, Iqbal J (2022) Dopant free triphenylamine‐based hole transport materials with excellent photovoltaic properties for high‐performance perovskite solar cells. Energy Technol 10. https://doi.org/10.1002/ente.202100838

  14. Yin J, Hu Y, Ju X-H (2014) Theoretical investigations on charge-transfer properties of pentacenequinone derivatives as n-type organic semiconductors. J Mol Model 20:2460. https://doi.org/10.1007/s00894-014-2460-9

    Article  CAS  PubMed  Google Scholar 

  15. Zubair I, Khera RA, Naveed A, Shehzad RA, Iqbal J (2022) Designing the optoelectronic properties of BODIPY and their photovoltaic applications for high performance of organic solar cells by using computational approach. Mater Sci Semicond Process 148:106812. https://doi.org/10.1016/j.mssp.2022.106812

    Article  CAS  Google Scholar 

  16. Maiti B, Wang K, Bunge SD, Twieg RJ, Dunietz BD (2020) Enhancing charge mobilities in self-assembled N⋯I halogen bonded organic semiconductors: a design approach based on experimental and computational perspectives. Org Electron 79:105637. https://doi.org/10.1016/j.orgel.2020.105637

    Article  CAS  Google Scholar 

  17. Luo Z, Ma R, Chen Z, Xiao Y, Zhang G, Liu T, Sun R, Zhan Q, Zou Y, Zhong C, Chen Y, Sun H, Chai G, Chen K, Guo X, Min J, Lu X, Yang C, Yan H (2020) Altering the positions of chlorine and bromine substitution on the end group enables high‐performance acceptor and efficient organic solar cells. Adv Energy Mater 10. https://doi.org/10.1002/aenm.202002649

  18. Tang ML, Bao Z (2011) Halogenated materials as organic semiconductors. Chem Mater 23:446–455. https://doi.org/10.1021/cm102182x

    Article  CAS  Google Scholar 

  19. Xiao L, Huang G, Zhang H, Zhang X, Li Y, Li S, Jiang T, Han B, Zhang Y, Zhou H (2022) Light managements and transparent electrodes for semitransparent organic and perovskite solar cells. Solar RRL 6. https://doi.org/10.1002/solr.202100818

  20. Wu H, Ma Z, Li M, Lu H, Tang A, Zhou E, Wen J, Sun Y, Tress W, Olsen JMH, Meloni S, Bo Z, Tang Z (2023) Impact of donor halogenation on reorganization energies and voltage losses in bulk-heterojunction solar cells. Energy Environ Sci 16:1277–1290. https://doi.org/10.1039/D3EE00174A

    Article  CAS  Google Scholar 

  21. Etabti H, Fitri A, Benjelloun AT, Benzakour M, Mcharfi M (2024) Advancing optoelectronic performance of organic and perovskite photovoltaics: computational modeling of hole transport material based on end-capped dibenzocarbazole molecules. Res Chem Intermed 50:1895–1927. https://doi.org/10.1007/s11164-024-05244-2

    Article  CAS  Google Scholar 

  22. Etabti H, Fitri A, Benjelloun AT, Benzakour M, Mcharfi M (2023) Designing and Theoretical Study of Dibenzocarbazole Derivatives Based Hole Transport Materials: Application for Perovskite Solar Cells. J Fluoresc 33:1201–1216. https://doi.org/10.1007/s10895-023-03144-z

    Article  CAS  PubMed  Google Scholar 

  23. Luo Y, Yao L, Gu W, Xiao C, Liao H, Ravva MK, Wang Y, Li Z, Zhang L, Lv A, Yue W (2020) Effect of halogenated substituent on the properties of aza-octacenes. Org Electron 85:105895. https://doi.org/10.1016/j.orgel.2020.105895

    Article  CAS  Google Scholar 

  24. Wang H, Liu T, Zhou J, Mo D, Han L, Lai H, Chen H, Zheng N, Zhu Y, Xie Z, He F (2020) Bromination: an alternative strategy for non‐fullerene small molecule acceptors. Adv Sci 7. https://doi.org/10.1002/advs.201903784

  25. Yang F, Li C, Lai W, Zhang A, Huang H, Li W (2017) Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Mater Chem Front 1:1389–1395. https://doi.org/10.1039/C7QM00025A

    Article  CAS  Google Scholar 

  26. Wang H, Han L, Zhou J, Liu T, Mo D, Chen H, Lai H, Zheng N, Xie Z, Zheng W, He F (2021) Isomerism: minor changes in the bromine substituent positioning lead to notable differences in photovoltaic performance. CCS Chemistry 3:2591–2601. https://doi.org/10.31635/ccschem.020.202000540

    Article  CAS  Google Scholar 

  27. Ji Ram V, Sethi A, Nath M, Pratap R (2019) Five-membered heterocycles. In: The chemistry of heterocycles, Elsevier, pp 149–478. https://doi.org/10.1016/B978-0-08-101033-4.00005-X

  28. Kwiecień H, Wodnicka A (2020) Five-membered ring systems: furans and benzofurans, pp 281–323. https://doi.org/10.1016/B978-0-12-819962-6.00007-5

  29. Gilman H, Jacoby AL (1938) Dibenzothiophene: orientation and derivatives. J Org Chem 03:108–119. https://doi.org/10.1021/jo01219a003

    Article  CAS  Google Scholar 

  30. Turkoglu G, Cinar ME, Ozturk T (2017) Thiophene-based organic semiconductors. Top Curr Chem 375:84. https://doi.org/10.1007/s41061-017-0174-z

    Article  CAS  Google Scholar 

  31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2010. http://www.gaussian.com/

  32. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377. https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  34. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  35. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  36. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA)—Reviews on Bioenergetics 811:265–322. https://doi.org/10.1016/0304-4173(85)90014-X

  37. Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65:599–610. https://doi.org/10.1103/RevModPhys.65.599

    Article  CAS  Google Scholar 

  38. Marcus RA (1965) On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J Chem Phys 43:679–701. https://doi.org/10.1063/1.1696792

    Article  CAS  Google Scholar 

  39. McMahon DP, Troisi A (2010) Evaluation of the external reorganization energy of polyacenes. J Phys Chem Lett 1:941–946. https://doi.org/10.1021/jz1001049

    Article  CAS  Google Scholar 

  40. Lu T, Chen F (2013) Bond order analysis based on the Laplacian of electron density in fuzzy overlap space. J Phys Chem A 117:3100–3108. https://doi.org/10.1021/jp4010345

    Article  CAS  PubMed  Google Scholar 

  41. Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley

    Google Scholar 

  42. Taouali W, Alimi K, SindhooNangraj A, Casida ME (2023) Density-functional theory (DFT) and time-dependent DFT study of the chemical and physical origins of key photoproperties of end-group derivatives of a nonfullerene acceptor molecule for bulk heterojunction organic solar cells. J Comput Chem 44:2130–2148. https://doi.org/10.1002/jcc.27186

    Article  CAS  PubMed  Google Scholar 

  43. Politzer P, Abu-Awwad F (1998) A comparative analysis of Hartree-Fock and Kohn-Sham orbital energies. Theor Chem Accounts: Theor Comput Model (Theoretica Chimica Acta) 99:83–87. https://doi.org/10.1007/s002140050307

    Article  CAS  Google Scholar 

  44. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260. https://doi.org/10.1021/ja00179a005

    Article  CAS  Google Scholar 

  45. Deepakvijay K, Prakasam A, Arivazhagan R, Anbarasan PM (2023) Insights into the structural, electronic, quantum chemical properties and molecular docking studies on novel NAMPT inhibitor molecule. Chem Phys Impact 7:100395. https://doi.org/10.1016/j.chphi.2023.100395

    Article  Google Scholar 

  46. Lewis DFV, Ioannides C, Parke DV (1994) Interaction of a series of nitriles with the alcohol-inducible isoform of P450: computer analysis of structure—activity relationships. Xenobiotica 24:401–408. https://doi.org/10.3109/00498259409043243

    Article  CAS  PubMed  Google Scholar 

  47. Aihara J (1999) Reduced HOMO−LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A 103:7487–7495. https://doi.org/10.1021/jp990092i

    Article  CAS  Google Scholar 

  48. O’boyle NM, Tenderholt AL, Langner KM (2008) cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845. https://doi.org/10.1002/jcc.20823

    Article  CAS  PubMed  Google Scholar 

  49. Savin A, Nesper R, Wengert S, Fässler TF (1997) ELF: the electron localization function angew chem. Int Ed Engl 36:1808–1832. https://doi.org/10.1002/anie.199718081

    Article  CAS  Google Scholar 

  50. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403. https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  51. Fuster F, Sevin A, Silvi B (2000) Topological analysis of the electron localization function (ELF) applied to the electrophilic aromatic substitution. J Phys Chem A 104:852–858. https://doi.org/10.1021/jp992783k

    Article  CAS  Google Scholar 

  52. Pilmé J, Piquemal J-P (2008) Advancing beyond charge analysis using the electronic localization function: chemically intuitive distribution of electrostatic moments. J Comput Chem 29:1440–1449. https://doi.org/10.1002/jcc.20904

    Article  CAS  PubMed  Google Scholar 

  53. Hernández-Trujillo J, García-Cruz I, Martínez-Magadán JM (2005) Topological analysis of the electron density and of the electron localization function of pyrene and its radicals. Chem Phys 308:181–192. https://doi.org/10.1016/j.chemphys.2004.08.010

    Article  CAS  Google Scholar 

  54. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Saleh G, Gatti C, Lo Presti L, Contreras-García J (2012) Revealing non-covalent interactions in molecular crystals through their experimental electron densities. Chem A European J 18:15523–15536. https://doi.org/10.1002/chem.201201290

    Article  CAS  Google Scholar 

  56. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7:625–632. https://doi.org/10.1021/ct100641a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ltayef M, Mbarek M, Almoneef MM, Alimi K (2023) Modeling of the photophysical and photovoltaic properties of an active layer based on the organic composite poly(2‐methoxy‐5‐(2‐ethyl‐hexyloxy)‐1,4‐phenylene‐vinylene) ( <scp>MEH‐PPV</scp> )–poly(3‐hexylthiophene) ( <scp>P3HT</scp> ): (6,6)‐phenyl <scp>C61</scp> butyric acid methyl ester ( <scp>PCBM</scp> ). Int J Quantum Chem 123. https://doi.org/10.1002/qua.27204

  58. Xie L, Xiao N, Li L, Xie X, Li Y (2020) Theoretical insight into the interaction between chloramphenicol and functional monomer (methacrylic acid) in molecularly imprinted polymers. Int J Mol Sci 21:4139. https://doi.org/10.3390/ijms21114139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pei L, Li D-Z, Zhang L-J (2019) Theoretical insights into the hydrogen bonding interaction in the complexation of epinephrine with uracil. J Mol Model 25:252. https://doi.org/10.1007/s00894-019-4123-3

    Article  CAS  PubMed  Google Scholar 

  60. Wu P, Chaudret R, Hu X, Yang W (2013) Noncovalent interaction analysis in fluctuating environments. J Chem Theory Comput 9:2226–2234. https://doi.org/10.1021/ct4001087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cheung DL, Troisi A (2010) Theoretical study of the organic photovoltaic electron acceptor PCBM: morphology, electronic structure, and charge localization. J Phys Chem C 114:20479–20488. https://doi.org/10.1021/jp1049167

    Article  CAS  Google Scholar 

  62. Malagoli M, Brédas JL (2000) Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules. Chem Phys Lett 327:13–17. https://doi.org/10.1016/S0009-2614(00)00757-0

    Article  CAS  Google Scholar 

  63. Lin BC, Cheng CP, You Z-Q, Hsu C-P (2005) Charge transport properties of tris(8-hydroxyquinolinato)aluminum(III): why it is an electron transporter. J Am Chem Soc 127:66–67. https://doi.org/10.1021/ja045087t

    Article  CAS  PubMed  Google Scholar 

  64. Irfan A, Cui R, Zhang J (2010) Toward rational designing of n-type materials: theoretical investigations of mer-Alq3 derivatives. J Mol Struct (Thoechem) 956:61–65. https://doi.org/10.1016/j.theochem.2010.06.028

    Article  CAS  Google Scholar 

  65. Shi Y, Chang Y, Lu K, Chen Z, Zhang J, Yan Y, Qiu D, Liu Y, Adil MA, Ma W, Hao X, Zhu L, Wei Z (2022) Small reorganization energy acceptors enable low energy losses in non-fullerene organic solar cells. Nat Commun 13:3256. https://doi.org/10.1038/s41467-022-30927-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu C-C, Li EY, Chou P-T (2022) Reducing the internal reorganization energy via symmetry controlled π-electron delocalization. Chem Sci 13:7181–7189. https://doi.org/10.1039/D2SC01851A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Professor Dr. P. M. ANBARASAN (Periyar University Salem) for his invaluable guidance and computational support.

Author information

Authors and Affiliations

Authors

Contributions

K. DEEPAKVIJAY: The first author played a pivotal role in this research project, providing the foundational idea, conducting quantum chemical calculations, and writing the manuscript.

A. PRAKASAM: The second and corresponding author provided guidance, supervision, and manuscript review, ensuring the project’s quality.

Corresponding authors

Correspondence to K. Deepakvijay or A. Prakasam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1445 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepakvijay, K., Prakasam, A. Exploring the effects of mono-bromination on hole-electron transport and distribution in dibenzofuran and dibenzothiophene isomers: a first-principles study. J Mol Model 30, 171 (2024). https://doi.org/10.1007/s00894-024-05966-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05966-5

Keywords

Navigation