Skip to main content
Log in

Theoretical prediction of low-energy photoelectron spectra of AlnNi clusters (n = 1–13)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Mixed-metal clusters have long been studied because of their peculiar properties and how they change with cluster size, composition, and charge state and their potential roles in catalysis. The characterization of these clusters is therefore a very important issue. One of the main experimental tools for characterizing their electronic structure is photoelectron spectroscopy. Theoretical computation completes the task by fully determining the structural properties and matching the theoretical predictions to the measured spectra. We present density functional theory computations of the structural, magnetic, and electronic properties of negatively charged mixed AlnNi- clusters with up to 13 Al atoms. The lowest energy structures of the anionic clusters with up to 7 atoms are also found to be low-energy isomers of the neutral counterparts found in the literature. The 13-atom cluster is found to be a quartet and a perfect icosahedron. The predicted photoelectron spectra are also presented and can be used to interpret future experimental data. We also presented indicators that can be used to determine the potential of these systems for single-atom catalysis. These indicators point to smaller clusters to be more reactive as the gap between the Fermi energy and the center of the d-band increases with cluster size and that Ni occupies an internal site for n = 11–13. We speculate that reactivity can be enhanced if one adds an additional Ni atom.

Methods

The DFT calculations were performed using the Becke exchange and Perdew-Wang/91 correlation functionals (BPW91), a DFT-optimized all-electron basis set for the aluminum atom, and the Stuttgart small core pseudopotential for the Ni atom. All of the computations used the Gaussian 03 software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data underlying the results are available as part of the article and no additional source data are required.

References

  1. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108(3):845–910

    Article  CAS  PubMed  Google Scholar 

  2. Chakraborty I, Pradeep T (2017) Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev 117(12):8208–8271

    Article  CAS  PubMed  Google Scholar 

  3. Jena P, Sun Q (2018) Super atomic clusters: design rules and potential for building blocks of materials. Chem Rev 118(11):5755–5870

    Article  CAS  PubMed  Google Scholar 

  4. Tyo EC, Vajda S (2015) Catalysis by clusters with precise number of atoms. Nature Nanotech 10:577–588

    Article  CAS  Google Scholar 

  5. Luo Z, Castleman AW Jr, Khanna SN (2016) Reactivity of metal clusters. Chem Rev 116(23):14456–14492

    Article  CAS  PubMed  Google Scholar 

  6. Yang X-F, Wang A, Botao Qiao B, Li J, Liu J, Zhang T (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46(8):1740–1748

    Article  CAS  PubMed  Google Scholar 

  7. Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118(10):4981–5079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodríguez-Kessler PL, Rodríguez-Domínguez AR (2016) Structures and electronic properties of TinV (n = 1–16) clusters: first-principles calculations. J Phys Chem A 120(15):2401–2407

    Article  PubMed  Google Scholar 

  9. Rodríguez-Kessler PL, Pan S, Florez E, Cabellos JL, Merino G (2017) Structural evolution of the rhodium-doped silver clusters AgnRh (n ≤ 15) and their reactivity toward NO. J Phys Chem C 121(35):19420–19427

    Article  Google Scholar 

  10. Rodríguez-Kessler PL, Alonso-Dávila P, Navarro-Santos P, Morato-Márquez JA, Ortíz-Chi F, Rodríguez-Domínguez AR (2019) Hydrogen chemisorption on Pd-doped copper clusters. J Phys Chem C 123(25):15834–15840

    Article  Google Scholar 

  11. Rodríguez-Kessler PL, Rodríguez-Domínguez AR, Morato-Márquez JA, Ortiz-Chi F, Carey DM, Muñoz-Castro A (2020) On the search of small Cu-Ru atomically precise superatoms. Cu10Ru cluster as a stable 18-ve endohedral structure. Chem Phys Let 754:137721

    Article  Google Scholar 

  12. Rodríguez-Kessler PL, Muñoz-Castro A (2023) Structure and stability of Mo-doped Cun (n = 1–12) clusters: DFT calculations. Inorg Chim Acta 556:121620

    Article  Google Scholar 

  13. Acioli PH, Jellinek J (2017) Theoretical analysis of photoelectron spectra of pure and mixed metal clusters: disentangling size, structure and composition effects. J Chem Phys C 121:16665–16672

    Article  CAS  Google Scholar 

  14. Acioli PH, Jellinek J (2022) A computational study of Aln and Aln−1Pt clusters: the effects of doping and a uniform tuning gauge for single-atom nanocatalysts. Eur Phys J D 76(12):230

    Article  CAS  Google Scholar 

  15. Cha C-Y, Ganteför G, Eberhardt W (1992) New experimental setup for photoelectron spectroscopy on cluster anions, Rev Sci Instrum 63:5661–5666

  16. Lineberger WC (2013) Once upon anion: a tale of photodetachment. Ann Rev Phys Chem 64:21–36

    Article  CAS  Google Scholar 

  17. Chen TT, Cheung LF, Wang LS (2022) Probing the nature of the transition-metal-boron bonds and novel aromaticity in small metal-doped boron clusters using photoelectron spectroscopy. Ann Rev Phys Chem 73:233–253

    Article  CAS  Google Scholar 

  18. Acioli PH, Zhang X, Bowen KH Jr, Jellinek J (2022) Electron binding energy spectra of AlnPt- clusters - a combined experimental and computational study. J Phys Chem A 126(26):4241–4247

    Article  CAS  PubMed  Google Scholar 

  19. Acioli PH (2020) Predicting the photoelectron spectrum of quasi octahedral Al6Mo cluster. ChemistryOpen 9:545–549

    Article  PubMed  PubMed Central  Google Scholar 

  20. Acioli PH, Zhang X, Bowen KH Jr, Jellinek J (2019) Electron binding energy spectra of AlnMo clusters: measurements, calculations, and theoretical analysis. J Phys Chem C 123(13):7810–7817

    Article  CAS  Google Scholar 

  21. Calleja M, Rey C, Alemany MMG, Gallego LJ, Ordejon P, Sánchez-Portal D, Artacho E, Soler JM (1999) Phys Rev B 60(3):2020–2024

    Article  CAS  Google Scholar 

  22. Wen J-Q, Jiang Z-Y, Li J-Q, Cao L-K, Chu S-Y (2010) Int J Quant Chem 110(7):1368–1375

    Article  CAS  Google Scholar 

  23. Song W, Wang B, Guo K, He C (2016) In energy science and applied techology ESAT 2016, Ed. Feng Z, pp 361-364

  24. Ma Z-W, Li B-X (2015) Comp Theor Chem 1068:88–96

    Article  CAS  Google Scholar 

  25. Krissinel EB, Jellinek J (1997) Chem Phys Lett 301(3–4):301–312

    Article  Google Scholar 

  26. Krissinel EB, Jellinek J (1997) Int J Quant Chem 62(2):185–197

    Article  CAS  Google Scholar 

  27. Rey C, Garcia-Rodeja J, Gallego LJ (1996) Phys Rev B 54(1):2942–2948

    Article  CAS  Google Scholar 

  28. Lloyd LD, Johnston R (1998) Chem Phys 236(1–3):107–121

    Article  CAS  Google Scholar 

  29. Bailey MS, Wilson NT, Roberts C, Johnston RL (2003) Eur Phys J D 25(2):41–55

    Article  CAS  Google Scholar 

  30. Wang X, Adeleke AA, Cao W, Luo Y, Zhang M, Yao Y, Y, (2016) Structures of nanoalloy clusters AunAln (n = 1–10) and the growth patterns to the bulk phase. J Phys Chem C 120(44):25588–25595

    Article  CAS  Google Scholar 

  31. Khetrapal NS, Jian T, Pal R, Lopez GV, Pande S, Wang L-S, Zeng XC (2016) Probing the structures of gold–aluminum alloy clusters AuxAly−: a joint experimental and theoretical study. Nanoscale 8:9805–9814

    Article  CAS  PubMed  Google Scholar 

  32. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100

    Article  CAS  Google Scholar 

  33. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244-13249

  34. Sosa C, Andzelm J, Elkin BC, Wimmer E, Dobbs KD, Dixon DA (1992) A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. J Phys Chem 96(16):6630–6636

    Article  CAS  Google Scholar 

  35. Dolg M, Wedig U, Stoll H, Preuss H (1987) Energy-adjusted ab initio pseudopotentials for the first row transition elements. J Chem Phys 86:866–872

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC et al (2004) Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford CT

  37. Jellinek J, Acioli PH (2003) Converting Kohn-Sham eigenenergies into electron binding energies. J Chem Phys 118:7783

    Article  CAS  Google Scholar 

  38. Wen J-Q, Zhang J-M, Chen G-X, Mang C-J, Wen Z-Y (2016) Computational research of Nin+1, Aln+1, AlnNi, AlnNi2 (n = 1–7) clusters by density functional theory. Comp Theo Chem 15:44–51

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Northeastern Illinois University Department of Physics and Astronomy.

Author information

Authors and Affiliations

Authors

Contributions

Paulo H Acioli performed all the calculations, prepared all the tables and figures and the analysis in the submitted manuscript.

Corresponding author

Correspondence to Paulo H. Acioli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acioli, P.H. Theoretical prediction of low-energy photoelectron spectra of AlnNi clusters (n = 1–13). J Mol Model 30, 155 (2024). https://doi.org/10.1007/s00894-024-05944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05944-x

Keywords

Navigation