Skip to main content
Log in

Structural, elastic, mechanical, electronic, and optical properties of cubic K2Pb2O3 from first-principle study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Based on first principles, the structure, elasticity, mechanics, electronics, and optical properties of cubic K2Pb2O3 were studied. The structural parameters calculated by this method are close to the previous theoretical results. The elastic constant, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, and mechanical stability are studied, and it is shown that cubic K2Pb2O3 is mechanically stable, isotropic, and brittleness. The electrical conductivity and chemical bonding of cubic K2Pb2O3 were analyzed based on the calculated band structure, density of states (DOS), and bond populations. The dispersion of optical functions, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, and loss function, is displayed and analyzed.

Methods

All computations have been carried out based on density functional theory (DFT) as implemented in the CASTEP code. The norm conservation pseudopotential method is used to exchange correlation functionals within the generalized gradient approximation (GGA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Hosono H (2007) Thin Solid Films 515:6000–6014

    Article  CAS  Google Scholar 

  2. Afre RA, Sharma N, Sharon M, Sharon M (2018) Rev Adv Mater Sci 53:79–89

    Article  CAS  Google Scholar 

  3. Liu QZ, Jin F, Gao GY, Li B, Zhang YX, Liu QC (2016) J Alloys Compd 684:125–131

    Article  CAS  Google Scholar 

  4. Stadler A (2012) Materials 5:661–683

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen DG, Wang YJ, Lin Z, Huang JK, Chen XZ, Pan DM, Huang F (2010) Cryst Growth Des 10:2057–2060

    Article  CAS  Google Scholar 

  6. Dixon SC, Scanlon DO, Carmalt CJ, Parkin IP (2016) J Mater Chem C 4:6946–6961

    Article  CAS  Google Scholar 

  7. Medvedeva JE, Freeman AJ, Bertoni MI, Mason TO (2004) Phys Rev Lett 93:016408

    Article  Google Scholar 

  8. Ganose AM, Scanlon DO (2016) J Mater Chem C 4:1467–1475

    Article  CAS  Google Scholar 

  9. Esteghamat A, Akhavan O (2023) Microelectron Eng 267–268:111899

    Article  Google Scholar 

  10. He WW, Ye CH (2015) J Mater Sci Technol 31:581–588

    Article  CAS  Google Scholar 

  11. Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos LM, Credgington D, Hanusch F, Bein T, Snaith HJ, Friend RH (2014) Nat Nanotechnol 9:687–692

    Article  CAS  PubMed  Google Scholar 

  12. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok S (2015) Science 348:1234

    Article  CAS  PubMed  Google Scholar 

  13. Adetayo AE, Ahmed TN, Zakhidov A, Beall GW (2021) Adv Opt Mater 9:2002102

    Article  CAS  Google Scholar 

  14. Das S, Jayaraman V (2014) Prog Mater Sci 66:112–255

    Article  CAS  Google Scholar 

  15. Batzill M, Diebold U (2005) Prog Surf Sci 79:47–154

    Article  CAS  Google Scholar 

  16. Saeedabad SH, Selopal GS, Rozati SM, Tavakoli Y, Sberveglieri G (2018) J Electron Mater 47:5165–5173

    Article  CAS  Google Scholar 

  17. Dou LT, Yang Y, You JB, Hong ZR, Chang WH, Li G, Yang Y (2014) Nat Commun 5:5404

    Article  CAS  PubMed  Google Scholar 

  18. Wang B, Zhong SP, Xu P, Zhang H (2020) J Mater Chem C 8:15526–15574

    Article  CAS  Google Scholar 

  19. Lien MB, Liu CH, Chun IY, Ravishankar S, Nien H, Zhou MM, Fessler JA, Zhong ZH, Norris TB (2020) Nat Photonics 14:143–148

    Article  CAS  Google Scholar 

  20. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Science 338:643

    Article  CAS  PubMed  Google Scholar 

  21. Shen JJ (2021) Synth Met 271:116582

    Article  CAS  Google Scholar 

  22. Guo WX, Xu ZJ, Zhang FY, Xie SY, Xu HY, Liu XY (2016) Adv Funct Mater 26:8855–8884

    Article  CAS  Google Scholar 

  23. Liu QB, Qian YT, Fu HH, Wang ZJ (2020) Npj Comput Mater 6:95

  24. Kumagai Y (2023) Phys Rev Appl 19:034063

    Article  CAS  Google Scholar 

  25. Hautier G, Miglio A, Ceder G, Rignanese GM, Gonze X (2013) Nat Commun 4:2292

    Article  PubMed  Google Scholar 

  26. Hu L, Wei RH, Tang XW, Lu WJ, Zhu XB, Sun YP (2020) J Appl Phys 128:140902

    Article  CAS  Google Scholar 

  27. Bronge W, Donike A, Schmitz D (1997) Zeitschrift für anorganische und allgemeine Chemie 623:1715–1718

    Article  Google Scholar 

  28. Hoppe R, Nowitzki B (1984) Zeitschrift für anorganische und allgemeine Chemie 509:145–152

    Article  CAS  Google Scholar 

  29. Martens VKP, Hoppe R (1977) Zeitschrift für anorganische und allgemeine Chemie 437:116–122

    Article  CAS  Google Scholar 

  30. Weihrich R, Anusca I (2006) Zeitschrift für anorganische und allgemeine Chemie 632:335–342

    Article  CAS  Google Scholar 

  31. Zhu L, Jiang X, Gao GY, Fu HH, Yao KL (2018) ACS Omega 3:13630–13635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu XK, Chen WJ, Yu YS, Tang YL (2018) Phys Lett A 328:3418–3422

    Article  Google Scholar 

  33. Robertson J, Peacock PW, Towler MD, Needs R (2002) Thin Solid Films 411: 96-100

  34. Peng W, Li LX, Yu SH, Zheng HR, Yang P (2020) Appl Surf Sci 502:144424

    Article  CAS  Google Scholar 

  35. Salah M, Yoon J, El-Desoky MM, Hussain Z, Ju H, Mo SK (2022) Curr Appl Phys 39:107–112

    Article  Google Scholar 

  36. Papadimitriou I, Utton C, Scott A, Tsakiropoulos P (2014) Intermetallics 54:125–132

    Article  CAS  Google Scholar 

  37. Gao J, Liu QJ, Tang B (2023) J Appl Phys 133:135901

    Article  CAS  Google Scholar 

  38. Pugh SF (1954) Philos Mag J Sci 45:823

    Article  CAS  Google Scholar 

  39. Liu QJ, Ran Z, Liu FS, Liu ZT (2015) J Alloys Compd 631:192–201

    Article  CAS  Google Scholar 

  40. Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Nat Mater 10:823–837

    Article  CAS  PubMed  Google Scholar 

  41. Kou J, Feng C, Jiang YB, Shao XM (2017) Nord J Bot 35:107–110

    Article  Google Scholar 

  42. Liu LY, Hu M, Pan YL, Xiong M, Liu C, Zhang Y, Luo K, Zhao ZS, Gao GY, Yu DL, He JL (2018) J Mater Sci 53(4316):4322

    Google Scholar 

  43. Norris AN (2006) Proc R Soc A 462:3385–3405

    Article  Google Scholar 

  44. Cao J, Li FG (2016) Philos Mag Lett 96:425–431

    Article  CAS  Google Scholar 

  45. Liu B, Wang S, Ke X, Fu XF, Liu XZ, Bai YF (2020) J Petrol Sci Eng 194:107464

    Article  CAS  Google Scholar 

  46. Liu J, Jiang QY, Zhang SD, Zhang H (2019) Physics Letters A 383:125990

    Article  CAS  Google Scholar 

  47. Liu WH, Liu QJ, Zhong M, Gan YD, Liu FS, Li XH, Tang B (2022) Acta Mater 236:118137

    Article  CAS  Google Scholar 

  48. Alward JF, Pong CY, El-Batanouny M, Wootcn F (1975) Phys Rev B 12:1105–1117

    Article  CAS  Google Scholar 

  49. Luo RB, Liu QJ, Fan DH, Liu ZT (2022) Appl Surf Sci 605:154739

    Article  CAS  Google Scholar 

  50. Sun J, Wang HT, He JL, Tian YJ (2005) Phys Rev B 71:125132

    Article  Google Scholar 

  51. Li DB, Yang P (2023) Mater Sci Eng B 290:116336

    Article  CAS  Google Scholar 

  52. Mandavkar R, Kulkarni R, Lin S, Pandit S, Burse S, Habib MA, Pandey P, Kim SH, Li MY, Kunwar S, Lee J (2022) Appl Surf Sci 574:151739

    Article  CAS  Google Scholar 

  53. Yi ZG, Ye JH, Kikugawa N, Kako T, Ouyang S, Stuart-Williams H, Yang H, Cao JY, Luo WJ, Li ZS, Liu Y, Withers RL (2010) Nat Mater 9:559–564

    Article  CAS  PubMed  Google Scholar 

  54. Yakout SM (2019) J Mater Sci 30:17053–17065

    CAS  Google Scholar 

  55. Hossain MS, Kabir H, Rahman MM, Hasan K, Bashar MS, Rahman M, Gafur MA, Islam S, Amri A, Jiang ZT, Altarawneh M, Dlugogorski BZ (2017) Appl Surf Sci 392:854–862

    Article  CAS  Google Scholar 

  56. Borovac D, Tan CK, Tansu N (2017) Sci Rep 7:17285

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nesa M, Momin MA, Sharmin M, Bhuiyan AH (2020) Chem Phys 528:110536

    Article  CAS  Google Scholar 

  58. Ma DM, Deng YF, Wang DP, Ji WL, Li EL (2019) Superlattices Microstruct 128:312–318

    Article  CAS  Google Scholar 

  59. Liu XM, Lv WG, Chen CT, Yang WL, Han JS, Lin JQ, Sun HG (2022) Mater Sci Semicond Process 138:106248

    Article  CAS  Google Scholar 

  60. Zhang R, Chen W, Gao N, Zhu YY, Mao WW, Chu L, Zhang J, Yang JP, Li XA, Huang W (2016) Phys Lett A 380:3524–3529

    Article  CAS  Google Scholar 

  61. Jiang J, Bian J, Li LM (2008) Acta Phys-Chim Sin 24(1):1–7

    Article  Google Scholar 

  62. Hong Y, Zhang XS, Li B, Li MZ, Shi QL, Wang YW, Li L (2013) J Rare Earth 31:1096–1101

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (no. 2682024ZTPY054), the Funds for the Central Universities, the 22nd Key Laboratory Open Project of Southwest Jiaotong University (Grant No. ZD202313001).

Author information

Authors and Affiliations

Authors

Contributions

Qiao-Yan Cheng: data curation, formal analysis, investigation, methodology, writing—original draft; Ya-Le Tao: formal analysis, investigation, writing—review and editing; Qi-Jun Liu: conceptualization, investigation, and methodology, Dai-He Fan: project administration, supervision, writing–review and editing; Zheng-Tang Liu: methodology, software; all authors read and approved the final manuscript.

Corresponding author

Correspondence to Ya-Le Tao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable for both human and/or animal studies, we allow the journal to review all the data, and we confirm the validity of the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was not published previously, and it is not submitted to more than one journal. It is also not split up into several parts to submit. No data have been fabricated or manipulated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, QY., Tao, YL., Fan, DH. et al. Structural, elastic, mechanical, electronic, and optical properties of cubic K2Pb2O3 from first-principle study. J Mol Model 30, 135 (2024). https://doi.org/10.1007/s00894-024-05940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05940-1

Keywords

Navigation