Skip to main content
Log in

Theoretical investigation on the solid–liquid phase transition of gallium through free energy analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Gallium, renowned for its notably low melting point and unique property of becoming liquid at room temperature, is a valuable constituent in phase change materials. In this study, we investigate the solid–liquid phase transition of gallium using the modified embedded atom method (MEAM) potential. It addresses the technique to compute the free energy difference between the solid and liquid without using a reference state. We examine various thermodynamic and dynamic properties, including density, specific heat capacity, diffusivity, and radial distribution functions. We compute the coexistence temperature of the solid–liquid phase transitions of gallium from free energy analysis. This information is crucial for understanding the behavior of the material under different pressure conditions and can be valuable for various applications, such as materials processing and high-pressure studies. The analysis, findings, and insights of the present work will be of great significance to the broad scientific and engineering communities in the field of phase transformation of materials.

Methods

A series of molecular dynamics(MD) simulations were conducted using the LAMMPS software packages. The gallium atoms are modeled using the modified embedded atom method (MEAM) potential. To accurately predict the solid–liquid phase transitions of gallium, we calculated free energy by employing the “constrained λ integration” method, coupled with multiple histogram reweighting (MHR). The solid–liquid coexistence line is determined through the Gibbs–Duhem integration technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Jara DAC, Fontana Michelon M, Antonelli A, De Koning M (2009) Theoretical evidence for a first-order liquid-liquid phase transition in gallium. J Chem Phys 130. https://doi.org/10.1063/1.3154424

  2. Ge H, Li J (2013) Keeping smartphones cool with gallium phase change material. J Heat Transfer 135:1–5. https://doi.org/10.1115/1.4023392

    Article  CAS  Google Scholar 

  3. Mingear J, Farrell Z, Hartl D, Tabor C (2021) Gallium-indium nanoparticles as phase change material additives for tunable thermal fluids. Nanoscale 13:730–738. https://doi.org/10.1039/d0nr06526a

    Article  CAS  PubMed  Google Scholar 

  4. Saha SK (2022) Dynamics of phase change of gallium under magnetic field and thermocapillary effects under variable gravity conditions. Therm Sci Eng Prog 29:101234. https://doi.org/10.1016/j.tsep.2022.101234

    Article  CAS  Google Scholar 

  5. Lin Y, Genzer J, Dickey MD (2020) Attributes, fabrication, and applications of gallium-based liquid metal particles. Adv Sci 7. https://doi.org/10.1002/advs.202000192

  6. Peng H, Guo W, Li M, Feng S (2021) Melting behavior and heat transfer performance of gallium for spacecraft thermal energy storage application. Energy 228:120575. https://doi.org/10.1016/j.energy.2021.120575

    Article  CAS  Google Scholar 

  7. Khoshmanesh K, Tang SY, Zhu JY et al (2017) Liquid metal enabled microfluidics. Lab Chip 17:974–993. https://doi.org/10.1039/c7lc00046d

    Article  CAS  PubMed  Google Scholar 

  8. Agarwal G, Kazior T, Kenny T, Weinstein D (2017) Modeling and analysis for thermal management in gallium nitride HEMTs using microfluidic cooling. J Electron Packag Trans ASME 139:1–11. https://doi.org/10.1115/1.4035064

    Article  CAS  Google Scholar 

  9. Xie W, Allioux FM, Ou JZ et al (2021) Gallium-based liquid metal particles for therapeutics. Trends Biotechnol 39:624–640. https://doi.org/10.1016/j.tibtech.2020.10.005

    Article  CAS  PubMed  Google Scholar 

  10. Abdelhamid HN, Mathew AP (2022) Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted applications: a review. Coord Chem Rev 451:214263. https://doi.org/10.1016/j.ccr.2021.214263

    Article  CAS  Google Scholar 

  11. Li R, Sun G, Xu L (2016) Anomalous properties and the liquid-liquid phase transition in gallium. J Chem Phys 145. https://doi.org/10.1063/1.4959891

  12. Ravelo R, Baskes M (1997) Equilibrium and thermodynamic properties of grey, white, and liquid tin. Phys Rev Lett 79:2482–2485. https://doi.org/10.1103/PhysRevLett.79.2482

    Article  CAS  Google Scholar 

  13. Baskes MI (2000) Atomistic model of plutonium. Phys Rev B - Condens Matter Mater Phys 62:15532–15537. https://doi.org/10.1103/PhysRevB.62.15532

    Article  CAS  Google Scholar 

  14. Daw MS, Baskes MI (1983) Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 50:1285–1288. https://doi.org/10.1103/PhysRevLett.50.1285

    Article  CAS  Google Scholar 

  15. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983–7991. https://doi.org/10.1103/PhysRevB.33.7983

    Article  CAS  Google Scholar 

  16. Baskes MI (1992) Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B 46:2727–2742. https://doi.org/10.1103/PhysRevB.46.2727

    Article  CAS  Google Scholar 

  17. Baskes MI (1987) Application of the embedded-atom method to covalent materials: a semiempirical potential for silicon. Phys Rev Lett 59:2666–2669. https://doi.org/10.1103/PhysRevLett.59.2666

    Article  CAS  PubMed  Google Scholar 

  18. Baskes MI, Nelson JS, Wright AF (1989) Semiempirical modified embedded-atom potentials for silicon and germanium. Phys Rev B 40:6085–6100. https://doi.org/10.1103/PhysRevB.40.6085

    Article  CAS  Google Scholar 

  19. Cajahuaringa S, De Koning M, Antonelli A (2012) Dynamics near a liquid-liquid phase transition in a non-tetrahedral liquid: the case of gallium. J Chem Phys 136. https://doi.org/10.1063/1.3684550

  20. Sweatman MB, Quirke N (2004) Simulating fluid-solid equilibrium with the Gibbs ensemble. Mol Simul 30:23–28. https://doi.org/10.1080/08927020310001626238

    Article  CAS  Google Scholar 

  21. Chen B, Siepmann JI, Klein ML (2001) Direct Gibbs ensemble Monte Carlo simulations for solid-vapor phase equilibria: applications to Lennard-Jonesium and carbon dioxide. J Phys Chem B 105:9840–9848. https://doi.org/10.1021/jp011950p

    Article  CAS  Google Scholar 

  22. Wang S, Zhang G, Liu H, Song H (2013) Modified Z method to calculate melting curve by molecular dynamics. J Chem Phys 138. https://doi.org/10.1063/1.4798225

  23. Morris JR, Wang CZ, Ho KM, Chan CT (1994) Melting line of aluminum from simulations of coexisting phases. Phys Rev B 49:3109–3115. https://doi.org/10.1103/PhysRevB.49.3109

    Article  CAS  Google Scholar 

  24. Wilding NB, Bruce AD (2000) Freezing by monte carlo phase switch. Phys Rev Lett 85:5138–5141. https://doi.org/10.1103/PhysRevLett.85.5138

    Article  CAS  PubMed  Google Scholar 

  25. Wilding NB (2002) A new simulation approach to the freezing transition. Comput Phys Commun 146:99–106. https://doi.org/10.1016/S0010-4655(02)00440-X

    Article  CAS  Google Scholar 

  26. Eike DM, Brennecke JF, Maginn EJ (2005) Toward a robust and general molecular simulation method for computing solid-liquid coexistence. J Chem Phys 122:1–12. https://doi.org/10.1063/1.1823371

    Article  CAS  Google Scholar 

  27. Das CK, Singh JK (2013) Effect of confinement on the solid-liquid coexistence of Lennard-Jones Fluid. J Chem Phys 139:1–14. https://doi.org/10.1063/1.4827397

    Article  CAS  Google Scholar 

  28. Hoover WG, Ree FH (1967) The melting transition and calculate the 47:4837

    Google Scholar 

  29. Frenkel D, Ladd AJC (1984) New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres. J Chem Phys 81:3188–3193. https://doi.org/10.1063/1.448024

  30. Grochola G (2004) Constrained fluid λ-integration: constructing a reversible thermodynamic path between the solid and liquid state. J Chem Phys 120:2122–2126. https://doi.org/10.1063/1.1637575

    Article  CAS  PubMed  Google Scholar 

  31. Das CK, Singh JK (2014) Oscillatory melting temperature of stockmayer fluid in slit pores. J Phys Chem C 118:20848–20857. https://doi.org/10.1021/jp503044v

    Article  CAS  Google Scholar 

  32. Das CK, Singh JK (2014) Melting transition of Lennard-Jones fluid in cylindrical pores. J Chem Phys 140. https://doi.org/10.1063/1.4876077

  33. Sinha VK, Metya AK, Das CK (2024) Estimation of solid-liquid coexistence curve for coarse-grained water models through reliable free energy method. Fluid Phase Equilib 577:113985. https://doi.org/10.1016/j.fluid.2023.113985

    Article  CAS  Google Scholar 

  34. Thompson AP, Aktulga HM, Berger R et al (2022) LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271:108171. https://doi.org/10.1016/j.cpc.2021.108171

    Article  CAS  Google Scholar 

  35. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J coputational Phys 117:1–19

    Article  CAS  Google Scholar 

  36. Baskes MI, Chen SP, Cherne FJ (2002) Atomistic model of gallium. Phys Rev B - Condens Matter Mater Phys 66:1–9. https://doi.org/10.1103/PhysRevB.66.104107

    Article  CAS  Google Scholar 

  37. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268. https://doi.org/10.1080/00268978400101201

    Article  Google Scholar 

  38. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519. https://doi.org/10.1063/1.447334

    Article  Google Scholar 

  39. Kofke DA (1993) Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line. J Chem Phys 98:4149–4162. https://doi.org/10.1063/1.465023

    Article  CAS  Google Scholar 

  40. Di Cicco A (1998) Phase transitions in confined gallium droplets. Phys Rev Lett 81:2942–2945. https://doi.org/10.1103/PhysRevLett.81.2942

    Article  Google Scholar 

  41. Niu H, Bonati L, Piaggi PM, Parrinello M (2020) Ab initio phase diagram and nucleation of gallium. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-020-16372-9

    Article  CAS  Google Scholar 

  42. Ferrenberg AM, Swendsen RH (1988) New Monte Carlo technique for studying phase transitions. Phys Rev Lett 61:2635–2638. https://doi.org/10.4324/9780203216446-20

    Article  CAS  PubMed  Google Scholar 

  43. Bosio L (1978) Crystal structures of Ga(II) and Ga(III). J Chem Phys 68:1221–1223

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Institute of Technology Raurkela for providing a computational facility to perform the present work.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Chandan K. Das.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, A., Das, C.K. Theoretical investigation on the solid–liquid phase transition of gallium through free energy analysis. J Mol Model 30, 111 (2024). https://doi.org/10.1007/s00894-024-05909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05909-0

Keywords

Navigation