Skip to main content
Log in

First-principles study of the effect of S-atom doping on the optoelectronic properties of stanene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Based on the first principles, the influence of S-atom doping on the electronic and optical properties of stanene is comprehensively examined in this work. The results show that pure stanene is a quasi-metal with zero bandgap. After doping with an S atom, opening the bandgap of pure stanene becomes possible and the state of the stanene is converted from quasi-metal to semiconductor. Analysis of the density of states reveals that the density of states of all doped systems is primarily made of the p-orbital of the Sn. The overlap population analysis showed that charge transfer occurs between S and Sn atoms under different doping concentrations. The charge transfer increases with increasing doping concentration. The charge transfer reaches a maximum at a doping concentration of 9.38%. The increase in doping concentration causes blue-shifting of the absorption and reflection peaks of the doped system as compared to those of pure stanene. It is expected that these studies can provide theoretical guidance for the practical application of stanene in optoelectronic devices.

Methods

All simulations are undertaken with the Cambridge Sequential Total Energy Package (CASTEP) (Wei et al. Physica B: Condensed Matter 545:99, 2018; Bafekry et al. Phys Chem Chem Phys, 2021; Zala et al. Appl Surf Sci, 2022; Bafekry et al. Nanotechnology, 2021; Bafekry et al. Phys Chem Chem Phys, 2021; Bafekry et al. J Phys: Condens Matter, 2021), which is based on density functional theory (DFT). For the exchange correlation, the generalized gradient approximation (GGA) is implemented with the Perdew-Burke-Ernzerhof (PBE) functional Perdew et al. Phys Rev B Condens Matter 48:4978, 1993. Using the Monkhorst–Pack technique, a specific K-point sample of the Brillouin zone was carried out Monkhorst and Pack Phys Rev B 13:5188, 1976. After the convergence tests, the K-point grid was set to 3 × 3 × 1. The plane-wave truncation energy was set to 400 eV. The residual stress for all atoms was 0.03 eV/Å. The energy convergence criterion was 1.0 × 10−5 eV. To prevent recurring interactions between the layers, a vacuum layer with a thickness of 20 Å was established in the Z-direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Wei L, Liu G-L, Fan D-Z, Zhang G-Y (2018) Physica B: Condens Matter 545:99

    Article  CAS  Google Scholar 

  2. Bafekry A, Faraji M, Fadlallah MM, Hoat DM, Khatibani AB, Sarsari IA, Ghergherehchi M (2021) Effect of adsorption and substitutional B doping at different concentrations on the electronic and magnetic properties of a BeO monolayer: a first-principles study. Phys Chem Chem Phys

  3. Zala VB, Shukla RS, Bafekry A, Gupta SK, Gajjar PN (2022) In silico study of adsorption of oxide gases by MN4 (M = Be, Mg) monolayers. Appl Surf Sci

  4. Bafekry A, Faraji M, Hieu NN, Ang YS, Karbasizadeh S, Abdolhosseini Sarsari I, Ghergherehchi M (2021) Two-dimensional Dirac half-metal in porous carbon nitride C6N7 monolayer via atomic doping. Nanotechnology

  5. Bafekry A, Faraji M, Karbasizadeh S, Khatibani AB, Ziabari AA, Gogova D, Ghergherehchi M (2021) Point defects in two-dimensional BeO monolayer: a first-principles study on electronic and magnetic properties. Phys Chem Chem Phys

  6. Bafekry A, Faraji M, Karbasizadeh S, Jappor HR, Sarsari IA, Ghergherehchi M, Gogova D (2021) Investigation of vacancy defects and substitutional doping in AlSb monolayer with double layer honeycomb structure: a first-principles calculation. J Phys: Condens Matter 34:065701

  7. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Phys Rev B Condens Matter 48:4978

    Article  CAS  PubMed  Google Scholar 

  8. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  9. Zhu FF, Chen WJ, Xu Y, Gao CL, Guan DD, Liu CH, Qian D, Zhang SC, Jia JF (2015) Nat Mater 14:1020

    Article  CAS  PubMed  Google Scholar 

  10. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  CAS  Google Scholar 

  11. Hoi BD, Yarmohammadi M, Mirabbaszadeh K, Habibiyan H (2018)  Spin- and valley-dependent electrical conductivity of ferromagnetic group-IV 2D sheets in the topological insulator phase. Physica E Low Dimens Syst Nanostruct 97:340

    Article  CAS  Google Scholar 

  12. Kumar V, Shukla S, Saxena S (2019) Quantum conductance in edge functionalized stanene nanoribbons: A first-principle study. Physica E Low Dimens Syst Nanostruct 114:113595

    Article  CAS  Google Scholar 

  13. Chen J, Wang Z, Dai X, Xiao J, Long M, Chen T (2020) The effects of transition metal adatoms on the electronic properties of stanene. Physica E Low Dimens Syst Nanostruct 124:114365

    Article  CAS  Google Scholar 

  14. Araidai M, Kurosawa M, Ohta A, Shiraishi K (2017)First-principles study on adsorption structure and electronic state of stanene on α-alumina surface. Jpn J Appl Phys 56:095701

    Article  Google Scholar 

  15. Eltinge S, Ismail-Beigi S (2022) Phys Rev Mater 6:014007

    Article  CAS  Google Scholar 

  16. Jingjin C, Kexin M, Jianrong X, Liang X, Xueqiong D, Zhiyong W (2022) Results Phys 34:105252

    Article  Google Scholar 

  17. Karimi N, Sardroodi JJ, Rastkar AE (2022) J Mol Model 28:290

    Article  CAS  PubMed  Google Scholar 

  18. Ma K, Chen J, Dai X, Xiao J, Wang L, Xu L, Wang Z (2021) Results Phys 28:104617

    Article  Google Scholar 

  19. Mahmud S, Haque MM, Alam MK (2022) Phys Status Solidi Rapid Res Lett 16:2200106

    Article  CAS  Google Scholar 

  20. Mao Y, Long L, Xu C, Yuan J (2018) Mater Res Express 5:065023

    Article  Google Scholar 

  21. Mortazavi B, Rahaman O, Makaremi M, Dianat A, Cuniberti G, Rabczuk T (2017) Physica E Low Dimens Syst Nanostruct 87:228

    Article  CAS  Google Scholar 

  22. Wang T, Zhao R, Zhao M, Zhao X, An Y, Dai X, Xia C (2017) J Mater Sci 52:5083

    Article  CAS  Google Scholar 

  23. Zhao J, Liu G, Wei L, Jiao G, Chen Y, Zhang G (2023) Comput Theor Chem 1225:114142

    Article  CAS  Google Scholar 

  24. Bechstedt F, Gori P, Pulci O (2021) Prog Surf Sci 96:100615

    Article  CAS  Google Scholar 

  25. Lyu JK, Zhang SF, Zhang CW, Wang PJ (2019) Ann Phys 531:1900017

    Article  CAS  Google Scholar 

  26. Wu S-C, Shan G, Yan B (2014) Phys Rev Lett 113:256401

    Article  PubMed  Google Scholar 

  27. Cherukara MJ, Narayanan B, Kinaci A, Sasikumar K, Gray SK, Chan MK, Sankaranarayanan SK (2016) J Phys Chem Lett 7:3752

    Article  CAS  PubMed  Google Scholar 

  28. Navid IA, Subrina S (2018) RSC Adv 8:31690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noshin M, Khan AI, Subrina S (2018) Nanotechnology 29:185706

    Article  PubMed  Google Scholar 

  30. Bachra ME, Zaari H, Benyoussef A, Kenz AE, Hachimi AGE (2017) J Supercond Nov Magn 31:2579

    Article  Google Scholar 

  31. Wang J, Xu Y, Zhang S-C (2014) Phys Rev B 90:054503

    Article  CAS  Google Scholar 

  32. Zhao C-X, Jia J-F (2020) Front Phys 15:53201

    Article  Google Scholar 

  33. Yang Y, Zhang H, Song L, Liu Z (2020) Appl Surf Sci 512:145727

    Article  CAS  Google Scholar 

  34. Zhang A, Yang H, Liu Q, Li W, Wang Y (2020) Synth Met 266:116441

    Article  CAS  Google Scholar 

  35. Zhou J, Liu D, Wu F, Yang L, Xiong Y, Abbasi A (2020) Theor Chem Acc 139:46

    Article  CAS  Google Scholar 

  36. He C, Cheng M, Zhang W (2018) Mater Res Express 5:065059

    Article  Google Scholar 

  37. Qingxiao Z, Li W, Weiwei J, Huanyu M, Shiyang Y, Yijia L (2022) Chem Phys Lett 808:140123

    Article  Google Scholar 

  38. Pamungkas MA, Sari VKR, Irwansyah, Putra SA, Abdurrouf, Nurhuda M (2021) Coatings 11:47

    Article  CAS  Google Scholar 

  39. Shaidu Y, Akin-Ojo O (2016) Comput Mater Sci 118:11

    Article  CAS  Google Scholar 

  40. Abbasi A, Sardroodi JJ (2018) Appl Surf Sci 456:290

    Article  CAS  Google Scholar 

  41. Barhoumi M, Sfina N, Lazaar K, Said M (2020) Solid State Commun 321:114016

    Article  CAS  Google Scholar 

  42. He J, Liu G, Li X, Wang H, Zhang G (2022) First-principles study of strain on BN-doped arsenene. J Mol Model 28

  43. Ren C-C, Ji W-X, Zhang C-W, Li P, Wang P-J (2016) Mater Res Express 3:105008

    Article  Google Scholar 

  44. Fadaie M, Shahtahmassebi N, Roknabad MR, Gulseren O (2018) Phys Lett A 382:180

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51371049), and the Department of Education Foundation of Liaoning Provincial (Grant No. LQGD2020008).

Author information

Authors and Affiliations

Authors

Contributions

Mengting Ma: Investigation, Methodology, Validation, Visualization, Writing—original draft, Writing—review & editing. Guili Liu: Software, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision. Xuewen Gao: Writing—review &; editing. Guoying Zhang: Writing—review &; editing.

Corresponding author

Correspondence to Guili Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Liu, G., Gao, X. et al. First-principles study of the effect of S-atom doping on the optoelectronic properties of stanene. J Mol Model 30, 115 (2024). https://doi.org/10.1007/s00894-024-05905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05905-4

Keywords

Navigation