Skip to main content
Log in

Investigating the physical and optoelectronic characteristics of Co2ZrZ compounds: findings from computational analysis and thermoelectric evaluation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context and results

The study examines the physical characteristics of Co2ZrZ compounds using the Wien2k code and the Anisimov and Gunnarsson approach. Results show metallic attributes in Co2ZrBi and Co2ZrAs, while Co2ZrPb exhibits semi-metallic tendencies. Energy gap evaluations reveal significant infrared transitions, indicating altered electron mobility compensated by increased ultraviolet absorption. These compounds have potential in space solar energy applications due to UV light absorption capabilities, especially in Co2ZrPb. The study also identifies optical phenomena like “super-luminescence” and plasmatic oscillations.

Computational and theoretical techniques

The study uses computational techniques like Wien2k calculation code and Hubbard parameter calculations to investigate Co2ZrPb, a compound with potential for space energy applications. Energy gap assessments are conducted using GGA and mBJ-GGA methods. The study also analyzes the optical behavior of the compounds, including infrared and ultraviolet absorption. The BoltzTraP code is used for thermoelectric investigations, revealing a P-type charge carrier predominance in Co2ZrPb. This comprehensive approach provides valuable insights into electrical conductivity and thermoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Heusler F, Starck W, Haupt E (1903) Magnetisch-chemische studien. Verh Dtsch Phys Ges 5:219–232

    CAS  Google Scholar 

  2. A.J. Bradley, J. Rodgers (1934) The crystal structure of the Heusler alloys, Proceedings of the Royal Society of London. Series A, Containing Papers of a Math Phys Character 144 340–359

  3. Şaşıoğlu E, Sandratskii L, Bruno P, Galanakis I (2005) Exchange interactions and temperature dependence of magnetization in half-metallic Heusler alloys. Phys Rev B 72:184415

    Google Scholar 

  4. Belkacem K, Zaoui Y, Amari S, Beldi L, Bouhafs B (2020) First-principles study of the new half-metallic ferromagnetic quaternary-Heusler alloys Na X NO (X= Ca, Sr, Ba), Spin, World Scientific, pp. 2050022

  5. Wang Y, Zheng J, Ni Z, Fei R, Liu Q, Quhe R, Xu C, Zhou J, Gao Z, Lu J (2012) Half-metallic silicene and germanene nanoribbons: towards high-performance spintronics device. NANO 7:1250037

    Google Scholar 

  6. Klimczuk T, Wang C, Gofryk K, Ronning F, Winterlik J, Fecher GH, Griveau J-C, Colineau E, Felser C, Thompson JD (2012) Superconductivity in the Heusler family of intermetallics. Phys Rev B 85:174505

    Google Scholar 

  7. Wiendlocha B, Winiarski M, Muras M, Zvoriste-Walters C, Griveau J-C, Heathman S, Gazda M, Klimczuk T (2015) Pressure effects on the superconductivity of the Hf Pd 2 Al Heusler compound: experimental and theoretical study. Phys Rev B 91:024509

    Google Scholar 

  8. Felser C, Fecher GH, Balke B (2007) Spintronics: a challenge for materials science and solid-state chemistry. Angew Chem Int Ed 46:668–699

    CAS  Google Scholar 

  9. Comtesse D, Geisler B, Entel P, Kratzer P, Szunyogh L (2010) Phys, RevB 89: 094410

  10. Reshak AH (2014) Fe 2 MnSi x Ge 1–x: influence thermoelectric properties of varying the germanium content. RSC Adv 4:39565–39571

    CAS  Google Scholar 

  11. Kirievsky K, Shlimovich M, Fuks D, Gelbstein Y (2014) An ab initio study of the thermoelectric enhancement potential in nano-grained TiNiSn. Phys Chem Chem Phys 16:20023–20029

    CAS  PubMed  Google Scholar 

  12. Birkel CS, Douglas JE, Lettiere BR, Seward G, Verma N, Zhang Y, Pollock TM, Seshadri R, Stucky GD (2013) Improving the thermoelectric properties of half-Heusler TiNiSn through inclusion of a second full-Heusler phase: microwave preparation and spark plasma sintering of TiNi 1+ x Sn. Phys Chem Chem Phys 15:6990–6997

    CAS  PubMed  Google Scholar 

  13. Özdoğan K, Şaşıoğlu E, Galanakis I (2013)Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: half-metallicity, spin-gapless and magnetic semiconductors, J Appl Phys 113

  14. Wang H, Pei Y, LaLonde AD, Jeffery Snyder G (2013) Material design considerations based on thermoelectric quality factor. Thermoelectric Nanomaterials: Materials Design and Applications 3–32

  15. Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48:8616–8639

    CAS  Google Scholar 

  16. Matougui M, Bouadjemi B, Houari M, Haid S, Lantri T, Zitouni A, Bentata S, Bouhafs B, Aziz Z (2019) Rattling Heusler semiconductors’ thermoelectric properties: first-principles prediction. Chin J Phys 57:195–210

    CAS  Google Scholar 

  17. Mesbah S, Houari M, Boufadi FZ, Bouadjemi B, Lantri T, Bentata S, Ameri M (2021) Full Heusler alloys, with high absorption coefficient, insight into the optical properties of Li2CaC and Li2SrC. Solid State Commun 328:114238

    CAS  Google Scholar 

  18. Zitouni A, Remil G, Bouadjemi B, Benstaali W, Lantri T, Matougui M, Houari M, Aziz Z, Bentata S (2020) Insight into structural, electronic, magnetic, and elastic properties of full-Heusler alloys Co2YPb (Y = Ti, V, Fe, and Mo): ab initio study. JETP Lett 112:290–298

    Google Scholar 

  19. Remil G, Zitouni A, Bouadjemi B, Houari M, Abbad A, Benstaali W, Cherid S, Matougui M, Lantri T, Bentata S (2021) A potential full Heusler thermoelectric material CO2ZrZ (Z=Al, Si, Ga and Sn) in low temperature: an ab-initio investigation. Solid State Commun 336:114422

    CAS  Google Scholar 

  20. Maafa A, Rozale H, Oughilas A, Boubaça A, Amar A, Lucache D (2020) Theoretical study of the electronic properties of XYZ (X= Fe, Co; Y= Zr, Mo; Z= Ge, Sb) ternary Heusler: abinitio study. Annals of West University of Timisoara-Physics 62:1–14

    CAS  Google Scholar 

  21. Mahan G, Bartkowiak M (1999) Wiedemann-Franz law at boundaries. Appl Phys Lett 74:953–954

    CAS  Google Scholar 

  22. Blaha P, Schwarz K, Madsen GK, Kvasnicka D, Luitz J (2001) wien2k, An augmented plane wave+ local orbitals program for calculating crystal properties 60

  23. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M, Perdew (1998) Burke, and Ernzerhof reply. Phys Rev Lett 80:891

    CAS  Google Scholar 

  25. Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102:226401

    PubMed  Google Scholar 

  26. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Google Scholar 

  27. Bouadi A, Lantri T, Mesbah S, Houari M, Ameri I, Blaha L, Ameri M, Al-Douri Y, El-Rehim AFA (2022) A new semiconducting full Heusler Li2BeX (X = Si, Ge and Sn): first-principles phonon and Boltzmann calculations. Phys Scr 97:105710

    CAS  Google Scholar 

  28. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci 30:244–247

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Houari M, Bouadjemi B, Abbad A, Lantri T, Haid S, Benstaali W, Matougui M, Bentata S (2020) Lead-free semiconductors with high absorption: insight into the optical properties of K2GeSnBr 6 and K2GeSnI6 halide double perovskites. JETP Lett 112:364–369

    CAS  Google Scholar 

  30. Salehi H, Agha-Aligol D, Mousavinezhad N (2023) Ab initio study of structural, electronic and magnetic properties of the new full Heusler alloys Co2ZrZ (Z= Pb, Bi, As). Comput Mater Sci 226:112259

    CAS  Google Scholar 

  31. Babiker S, Gao G, Yao KL (2018) First-principle calculation of electronic structures and magnetic properties of Heusler alloys Co 2 ZrPb and Zr 2 MnBa. J Supercond Novel Magn 31:905–913

    CAS  Google Scholar 

  32. Hussain MI, Khalil RMA (2022) Density functional theory studies of the structural, optoelectronic, bond stiffness and lattice dynamical properties of double perovskite oxides M2YVO6 (M= Mg, Sr): promising candidates for optoelectronic applications. Mater Sci Semicond Process 152:107050

    CAS  Google Scholar 

  33. Hussain MI, Khalil RMA, Hussain F (2021) Computational exploration of structural, electronic, and optical properties of novel combinations of inorganic Ruddlesden-Popper layered perovskites Bi2XO4 (X = Be, Mg) using Tran and Blaha-modified Becke-Johnson approach for optoelectronic applications. Energ Technol 9:2001026

    CAS  Google Scholar 

  34. Hussain MI, Khalil RMA, Hussain F, Rana AM (2021) DFT-based insight into the magnetic and thermoelectric characteristics of XTaO3 (X = Rb, Fr) ternary perovskite oxides for optoelectronic applications. Int J Energy Res 45:2753–2765

    CAS  Google Scholar 

  35. Hussain MI, Arif Khalil RM, Hussain F, Rana AM, Murtaza G, Imran M (2020) Probing the structural, electronic, mechanical strength and optical properties of tantalum-based oxide perovskites ATaO3 (A = Rb, Fr) for optoelectronic applications: First-principles investigations. Optik 219:165027

    CAS  Google Scholar 

  36. Hussain MI, Khalil RMA, Hussain F, Imran M, Rana AM, Kim S (2020) Investigations of structural, electronic and optical properties of TM-GaO3 (TM = Sc, Ti, Ag) perovskite oxides for optoelectronic applications: a first principles study. Mater Res Express 7:015906

    Google Scholar 

  37. Anisimov V, Gunnarsson O (1991) Density-functional calculation of effective Coulomb interactions in metals. Phys Rev B 43:7570

    CAS  Google Scholar 

  38. Bouadjemi B, Lantri T, Matougui M, Houari M, Bentata R, Aziz Z, Bentata S (2020) High spin polarization and thermoelectric efficiency of half-metallic ferromagnetic CrYSn (Y=Ca, Sr) of half-Heusler compounds. SPIN 10:2050010

    Google Scholar 

  39. Rai D, Shankar A, Ghimire M, Thapa R (2012) A comparative study of a Heusler alloy Co2FeGe using LSDA and LSDA+ U. Physica B 407:3689–3693

    CAS  Google Scholar 

  40. De Groot R, Mueller F, van Engen PV, Buschow K (1983) New class of materials: half-metallic ferromagnets. Phys Rev Lett 50:2024

    Google Scholar 

  41. Chowdhury A-N, Hoque KA, Kumer A (2021)Facile synthesis of computationally designed MgAl2O4/CeO2/Cu2O and MgAl2O4/CeO2/Ag2O smart heterojunction photocatalysts for aqueous organic pollutants degradation, SPAST Abstracts 1

  42. Sikder MM, Chakma U, Kumer A, Islam MJ, Habib A, Alam MM (2021) The exploration of structural, electronic and optical properties for MoS2 and Mo0 95W0 05S2 photocatalyst effort on wastewater treatment using DFT functional of first principle approach. Appl J Environ Eng Sci 7(7–1):12103–2113

    Google Scholar 

  43. Ali MH, Khatun H, Khan M, Roy S, Roy S, Hossain R, Mia MR, Khan AR, Hussain SA, Hossen MB (2023) Theoretical and computational exploration of electronic structure, optical properties, open circuit voltage, and toxicity of perovskites solar Cell:(Cs2SiX6, X= Cl, Br, and I). Hybrid Advances 4:100084

    Google Scholar 

  44. Sahnoun M, Zbiri M, Daul C, Khenata R, Baltache H, Driz M (2005) Full potential calculation of structural, electronic and optical properties of KMgF3. Mater Chem Phys 91:185–191

    CAS  Google Scholar 

  45. Kronig RDL (1926) On the theory of dispersion of x-rays. Josa 12:547–557

    CAS  Google Scholar 

  46. Anjami A, Boochani A, Elahi SM, Akbari H (2017) Ab-initio study of mechanical, half-metallic and optical properties of Mn2ZrX (X= Ge, Si) compounds. Results Phys 7:3522–3529

    Google Scholar 

  47. Peiponen K-E, Lucarini V, Vartiainen E, Saarinen J (2004) Kramers-Kronig relations and sum rules of negative refractive index media. The Eur Phys J B-Condensed Matter Complex Syst 41:61–65

    CAS  Google Scholar 

  48. Sun J, Wang H-T, He J, Tian Y (2005) Ab initio investigations of optical properties of the high-pressure phases of ZnO. Phys Rev B 71:125132

    Google Scholar 

  49. Benatmane S, Beldi L, Bendaoud H, Méçabih S, Abbar B, Bouhafs B (2019) Spin-polarized optical properties of half-metallic binary XBi (X= Ca, Sr and Ba) compounds in zinc blende and wurtzite phases. Indian J Phys 93:627–638

    CAS  Google Scholar 

  50. Meziani A, Heciri D, Belkhir H (2011) Structural, electronic, elastic and optical properties of fluoro-perovskite KZnF3. Physica B 406:3646–3652

    CAS  Google Scholar 

  51. Madsen GK, Singh DJ (2006) BoltzTraP A code for calculating band-structure dependent quantities. Comput Phys Commun 175:67–71

    CAS  Google Scholar 

  52. Madsen GK, Carrete J, Verstraete MJ (2018) BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput Phys Commun 231:140–145

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deepest gratitude to the Deanship of Scientific Research and to the College of Engineering at the University of Hail for providing necessary support to conducting this research.

Funding

The research reported herein was funded by the Deanship of Scientific Research at the University of Hail, Saudi Arabia, through the project number RG-21 084.

Author information

Authors and Affiliations

Authors

Contributions

M.H and B.B write the manuscript; S.M and B.A and T.L do the calculation; S.H and A.K and A.A draw the figures;M.M and A.B and S.B chech the formating of the Manuscript

Corresponding author

Correspondence to Mohammed Houari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houari, M., Mesbah, S., Lantri, T. et al. Investigating the physical and optoelectronic characteristics of Co2ZrZ compounds: findings from computational analysis and thermoelectric evaluation. J Mol Model 30, 110 (2024). https://doi.org/10.1007/s00894-024-05903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05903-6

Keywords

Navigation