Skip to main content
Log in

The structural, stability, electronic, optical and thermodynamic properties of MoX2 (X= S, Se, and Te) under hydrostatic pressures: a plasmon approach and first-principle study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The new equations have been developed for the structural and electronic properties using the plasmon calculations for the first time for 2-D MoX2 structures. Literature shows still an extensive study is required on the stability and optical properties of MoX2 under different hydrostatic pressures and thermal properties under different temperatures using the first principles, for electronic industrial applications. The stability is analyzed using binding energy and phonon calculations. The phase transition of metallization of MoX2 is discussed using band structure calculations under different hydrostatic pressures. The calculated work function shows the photoemission starts from the threshold frequency of 4.189×104 cm-1, 3.184×104 cm-1, and 3.651×104 cm-1, respectively, for MoS2, MoSe2, and MoTe2 materials. The optical properties such as refractive index n(0), and static dielectric permittivity ε(0) for three successive materials are calculated under different hydrostatic pressures, applicable for optoelectronic applications. The calculated theoretical and computational values agree well with each other and also agree with reported and experimental values. Some of the values are calculated for the first time.

Methods

The theoretical equations are derived using the molecular weight, effective valence electrons, and density of molecule of MoX2 structures. The simulation work is performed using GGA-PBE approximation in the CASTEP simulation package with DFT+D semi-empirical dispersion correction. An ultra-soft pseudopotential representation calculates the electronic and optical properties with a finite basis set kinetic energy cut-off of 381.0 eV. Each geometry has been optimized using Broyden, Fletcher, Goldfarb, and Shanno's (BFGS) algorithm for 100 iterations with a fixed basis quality variable cell method and finite electronic minimization parameters. The phonon calculations were performed using TDFT with a kinetic energy cut of 460 eV in a norm-conserving linear response method. The interpolation with a finite dispersion quality and q-vector grid spacing is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Novoselov KS (2004) Electric Field Effect in Atomically Thin Carbon Films. Science 306:666–669

    CAS  PubMed  Google Scholar 

  2. Zhang Y, Tan Y, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’ s phase in graphene. Nature 438:201–204

    CAS  PubMed  Google Scholar 

  3. Wu Y, Lin Y, Bol AA, Jenkins KA, Xia F, Farmer DB, Zhu Y, Avouris P (2011) High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472:74–78

    CAS  PubMed  Google Scholar 

  4. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    CAS  PubMed  Google Scholar 

  5. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622

    CAS  Google Scholar 

  6. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    CAS  PubMed  Google Scholar 

  7. Wang S, Tian H, Ren C, Yu J, Sun M (2018) Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Sci Rep 8:12009

  8. Memaran S, Pradhan NR, Lu Z, Rhodes D, Ludwig J, Zhou Q, Ogunsolu O, Ajayan PM, Smirnov D, Fernández-Domínguez AI, García-Vidal FJ, Balicas L (2015) Pronounced Photovoltaic Response from Multilayered Transition-Metal Dichalcogenides PN-Junctions. Nano Lett 15:7532–7538

    CAS  PubMed  Google Scholar 

  9. Huo N, Wei Z, Meng X, Kang J, Wu F, Li S-S, Wei S-H, Li J (2015) Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS 2 and WS 2. J Mater Chem C 3:5467–5473

    CAS  Google Scholar 

  10. He K, Poole C, Mak KF, Shan J (2013) Experimental Demonstration of Continuous Electronic Structure Tuning via Strain in Atomically Thin MoS2. Nano Lett 13:2931–2936

    CAS  PubMed  Google Scholar 

  11. Muller GA, Cook JB, Kim H-S, Tolbert SH, Dunn B (2015) High Performance Pseudocapacitor Based on 2D Layered Metal Chalcogenide Nanocrystals. Nano Lett 15:1911–1917

    CAS  PubMed  Google Scholar 

  12. Tsai M-L, Su S-H, Chang J-K, Tsai D-S, Chen C-H, Wu C-I, Li L-J, Chen L-J, He J-H (2014) Monolayer MoS 2 Heterojunction Solar Cells. ACS Nano 8:8317–8322

    CAS  PubMed  Google Scholar 

  13. David L, Bhandavat R, Singh G (2014) MoS 2 /Graphene Composite Paper for Sodium-Ion Battery Electrodes. ACS Nano 8:1759–1770

    CAS  PubMed  Google Scholar 

  14. O'Brien M, McEvoy N, Hanlon D, Lee K, Gatensby R, Coleman JN, Duesberg GS (2015) Low wavenumber Raman spectroscopy of highly crystalline MoSe 2 grown by chemical vapor deposition. Phys Status Solidi B 252:2385–2389

    CAS  Google Scholar 

  15. Mo S-K, Hwang C, Zhang Y, Fanciulli M, Muff S, Hugo Dil J, Shen Z-X, Hussain Z (2016) Spin-resolved photoemission study of epitaxially grown MoSe 2 and WSe 2 thin films. J Phys Condens Matter 28:454001

    PubMed  Google Scholar 

  16. Coleman JN et al (2011) Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 331:568–571

    CAS  PubMed  Google Scholar 

  17. Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8:497–501

    CAS  PubMed  Google Scholar 

  18. Xiao D, Liu G-B, Feng W, Xu X, Yao W (2012) Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys Rev Lett 108:196802

    PubMed  Google Scholar 

  19. Lee LTL, He J, Wang B, Ma Y, Wong KY, Li Q, Xiao X, Chen T (2015) Few-Layer MoSe2 Possessing High Catalytic Activity towards Iodide/Tri-iodide Redox Shuttles. Sci Rep 4:4063

    Google Scholar 

  20. Jiang J, Li H, Dai L, Hu H, Zhao C (2016) Raman scattering of 2 H -MoS 2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa). AIP Adv 6:035214

    Google Scholar 

  21. Yang L, Dai L, Li H, Hu H, Liu K, Pu C, Hong M, Liu P (2019) Pressure-induced metallization in MoSe 2 under different pressure conditions. RSC Adv 9:5794–5803

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang L, Dai L, Li H, Hu H, Liu K, Pu C, Hong M, Liu P (2019) Characterization of the pressure-induced phase transition of metallization for MoTe2 under hydrostatic and non-hydrostatic conditions. AIP Adv 9:065104

    Google Scholar 

  23. Pawar SA, Kim D, Lee R, Kang S-W, Patil DS, Kim TW, Shin JC (2019) Efficient supercapacitor based on polymorphic structure of 1T′-Mo6Te6 nanoplates and few-atomic-layered 2H-MoTe2: A layer by layer study on nickel foam. Chem Eng J 371:182–192

    CAS  Google Scholar 

  24. Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W (2011) First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Phys B Condens Matter 406:2254–2260

    CAS  Google Scholar 

  25. Luan Q, Yang C-L, Wang M-S, Ma X-G (2017) First-principles study on the electronic and optical properties of WS2 and MoS2 monolayers. Chin J Phys 55:1930–1937

    CAS  Google Scholar 

  26. Zou H, Zeng Q, Peng M, Zhou W, Dai X, Ouyang F (2018) Electronic structures and optical properties of P and Cl atoms adsorbed/substitutionally doped monolayer MoS 2. Solid State Commun 280:6–12

    CAS  Google Scholar 

  27. Bouarissa A, Gueddim A, Bouarissa N, Maghraoui-Meherzi H (2020) Optical spectra of monolayer MoS2 from spin-polarized all electrons density-functional calculations. Optik 222:165477

    CAS  Google Scholar 

  28. Liang L, Meunier V (2014) First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 6:5394

    CAS  PubMed  Google Scholar 

  29. Ma J-J, Zheng J-J, Zhu X-L, Liu P-F, Li W-D, Wang B-T (2019) First-principles calculations of thermal transport properties in MoS2/MoSe2 bilayer heterostructure. Phys Chem Chem Phys 21:10442–10448

    CAS  PubMed  Google Scholar 

  30. Liu J, Zhao Y, Wang W, Zhong Q, Dai Z, Meng S (2020) First-principles study of phonon thermal transport in II–VI group graphene like materials. J Vac Sci Technol A 38:062202

    CAS  Google Scholar 

  31. Gueddim A, Bouarissa N, Algarni H et al (2022) Band Structure and Optical Spectra of Bulk, Tri-Layer, Bi-Layer and Monolayer CdS System: A Comparative Study. Trans Electr Electron Mater 23:404–413

    Google Scholar 

  32. Bouguerra K, Aksas A, Gueddim A et al (2021) Study on graphene-like monolayer ZnS1−xOx: structural and optoelectronic properties. Theor Chem Accounts 140:161

    CAS  Google Scholar 

  33. Zhao Y, Wang W, Li C, He L (2017) First-principles study of nonmetal doped monolayer MoSe2 for tunable electronic and photocatalytic properties. Sci Rep 7:17088

    PubMed  PubMed Central  Google Scholar 

  34. Li H, Huang M, Cao G (2017) Stability, bonding and electronic structures of halogenated MoS 2 monolayer: A first-principles study. Phys E: Low-Dimens Syst Nanostructures 91:8–14

    CAS  Google Scholar 

  35. Nayak AP, Bhattacharyya S, Zhu J, Liu J, Wu X, Pandey T, Jin C, Singh AK, Akinwande D, Lin J-F (2014) Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat Commun 5:3731

    CAS  PubMed  Google Scholar 

  36. Yuan J-N, Cheng Y, Zhang X-Q, Chen X-R, Cai L-C (2015) First-Principles Study of Electronic and Elastic Properties of Hexagonal Layered Crystal MoS2 Under Pressure. Zeitschrift Für Naturforschung A 70:529–537

    CAS  Google Scholar 

  37. Shang J, Zhang L, Cheng X, Zhai F (2015) Pressure induced effects on the electronic and optical properties of MoS2. Solid State Commun 219:33–38

    CAS  Google Scholar 

  38. Si JG, Lu WJ, Lv HY, Zhao BC, Sun YP (2019) Pressure controllable phase transition in MoTe2 by the interlayer band occupancy. Phys Lett A 383(35):126016

    CAS  Google Scholar 

  39. Zhao Z et al (2015) Pressure induced metallization with absence of structural transition in layered molybdenum diselenide. Nat Commun 6:7312

    CAS  PubMed  Google Scholar 

  40. Santosh R, Kumar V (2021) The pressure effect on stability, electronic and optical properties of fluorine passivated graphene (CF)n: A first-principle study. Mater Sci Eng B 269:115163

    CAS  Google Scholar 

  41. Routu S, Malla JMR, Yattirajula SK, Uppala NR (2022) Effect of hydrogen coverage on elastic and optical properties of silicene: a first-principle study. J Mol Model 28:242

    CAS  PubMed  Google Scholar 

  42. Kumar V, Santosh R (2021) The stability, structural, electronic, and optical properties of hydrogenated silicene under hydrostatic pressures: a first-principle study. J Mol Model 27:278

    CAS  PubMed  Google Scholar 

  43. Kumar V, Chandra S (2018) Second-Order Nonlinear Optical Tensor Coefficients of LiXTe2 (X= Al, Ga, In) Chalcopyrite Semiconductors. Cryst Res Technol 53:1800133

    Google Scholar 

  44. Kumar V, Tripathy SK, Jha V (2012) Second order nonlinear optical properties of AIBIIIC2VI chalcopyrite semiconductors. Appl Phys Lett 101:192105

    Google Scholar 

  45. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244

    CAS  Google Scholar 

  46. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744

    CAS  Google Scholar 

  47. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    CAS  Google Scholar 

  48. Fischer TH, Almlöf J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774

    CAS  Google Scholar 

  49. Kumar Srivastava V (1984) Ionic and covalent energy gaps of cscl crystals. Phys Lett 120A:127–129

    Google Scholar 

  50. Haldar S, Vovusha H, Yadav MK, Eriksson O, Sanyal B (2015) Systematic study of structural, electronic, and optical properties of atomic-scale defects in the two-dimensional transition metal dichalcogenides MX2 (M=Mo, W; X=S, Se, Te). Phys Rev B 92:235408

    Google Scholar 

  51. Molina-Sánchez A, Wirtz L (2011) Phonons in single-layer and few-layer MoS2 and WS2. Phys Rev B 84:155413

    Google Scholar 

  52. Roy A, Movva CP, Hema S, Biswarup K, Kim R, Dey A, Rai T, Pramanik SG, Tutuc E, Banerjee SK (2016) Structural and Electrical Properties of MoTe2 and MoSe2 Grown by Molecular Beam Epitaxy. ACS Appl Mater Interfaces 8:7396–7402

    CAS  PubMed  Google Scholar 

  53. Belete M, Kataria S, Koch U, Kruth M, Engelhard C, Mayer J, Engström O, Lemme MC (2018) Dielectric Properties and Ion Transport in Layered MoS2 Grown by Vapor-Phase Sulfurization for Potential Applications in Nanoelectronics. ACS Appl Nano Mater 1(11):6197–6204

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lahourpour F, Boochani A, Parhizgar SS, Elahi SM (2019) Structural, electronic and optical properties of graphene-like nano-layers MoX2(X:S,Se,Te): DFT study. J Theor Appl Phys 13:191–201

    Google Scholar 

  55. Şahin H, Topsakal M, Ciraci S (2011) Structures of fluorinated graphene and their signatures. Phys Rev B 83:115432

    Google Scholar 

  56. Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: A two-dimensional hydrocarbon. Phys Rev B Condens Matter Mater Phys 75:1–4

    Google Scholar 

  57. Parlinski K, Kawazoe Y (2000) Ab initio study of phonons and structural stabilities of the perovskite-type MgSiO3. J Eur Phys B16:49–58

    Google Scholar 

  58. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. J Chem Phys 23:1833–1840

    CAS  Google Scholar 

  59. SanthiBhushan B, Khan MS, Srivastava A, Khan MS (2016) First Principle Analysis of (10-Boranylanthracene-9-yl)borane-Based Molecular Single-Electron Transistor for High-Speed Low-Power Electronics. IEEE Trans Electron Devices 63:1232–1238

    Google Scholar 

  60. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G, Wang F (2010) Emerging Photoluminescence in Monolayer MoS2. Nano Lett 10:1271–1275

    CAS  PubMed  Google Scholar 

  61. Kuila A, Routu S, Saravanan P, Wang C, Bahnemann D (2022) Thermo-photodynamic perspective of the simultaneous S-Scheme ternary heterostructure through Ag3VO4 shuttle for the increased photo-redox ability. Appl Mater Today 27:101435

    Google Scholar 

  62. Ashcroft NW, David Mermin N (1976) Solid State Physics. Harcourt college publishers ISBN-0-03-083993-9

    Google Scholar 

  63. Kasap SO (2017) Principles of Electronic Materials and Devices. McGraw Hill Education ISBN-978-0070648203

    Google Scholar 

  64. Momida H, Hamada T, Takagi Y, Yamamoto T, Uda T, Ohno T (2007) Dielectric constants of amorphous hafnium aluminates: First-principles study. Phys Rev B 75:195105

  65. Kronig RD (1926) On the Theory of Dispersion of X-Rays. J Opt Soc Am 12:547

    CAS  Google Scholar 

  66. Reshak AH, Auluck S, Kityk IV (2009). J Alloys Compd 473:20–24

    CAS  Google Scholar 

  67. Wen X-D, Hand L, Labet V, Yang T, Hoffmann R, Ashcroft NW, Oganov AR, Lyakhov AO (2011) Graphane sheets and crystals under pressure. Proc Natl Acad Sci 108:6833–6837

    CAS  PubMed Central  Google Scholar 

  68. Penn DR (1962) Wave-Number-Dependent Dielectric Function of Semiconductors. Phys Rev 128:2093

    CAS  Google Scholar 

  69. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001). Rev Mod Phys 73(2):515–562

    CAS  Google Scholar 

  70. Feng Huang L, Zeng Z (2013). J Appl Phys 113:083524

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. D. Venkat Rao, Velagapudi Ramakrishna Siddhartha Engineering College and Prof. Rajiv Shekhar, Director, IIT(ISM), Dhanbad, for his encouragement and inspiration throughout the work.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Santosh.

Ethics declarations

Ethical approval

Authors followed the required ethics while preparing the manuscript.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santosh, R., Chandra, S., Kumar, V. et al. The structural, stability, electronic, optical and thermodynamic properties of MoX2 (X= S, Se, and Te) under hydrostatic pressures: a plasmon approach and first-principle study. J Mol Model 30, 99 (2024). https://doi.org/10.1007/s00894-024-05887-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05887-3

Keywords

Navigation