Skip to main content
Log in

Mechanism and dynamics of Baeyer–Villiger oxidation of furfural to maleic anhydride in presence of H2O2 and Au clusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The increasing demand for fuels and chemicals in the world has prompted the exploration of various forms of renewable energy resources. Using C5-based furfural as the platform to replace the fossil energy resources is greatly attractive because of its abundance and environmental friendliness. Here we study the activity, selectivity, and possible reaction pathways for the Baeyer–Villiger oxidation of furfural over small Au clusters using hydrogen peroxide as oxidant. Furfural reacts with hydrogen peroxide in the presence of the catalysts with 93% selectivity towards maleic anhydride. Natural population analysis, frontier molecular orbital analysis, and spectroscopic analysis are used to illustrate the interaction mechanism between C5H4O2, H2O2, and Au. Reaction pathways leading to the formation of maleic anhydride are also explored. The reaction of C5H4O2 with H2O2 in the absence of a catalyst bears a relatively high transition state energy barrier of 2.98 eV for the first step involving absorption of H atom of H2O2 on the –OH group of C5H4O2. This is in agreement with the blank experiment where there were rare oxidation products observed in the absence of the metal cluster catalysts. On the other hand, transition state energies in the presence of the Au metal clusters are lower and the most feasible pathway is where the substrate and H2O2 co-bind on the Au catalyst and H2O2 molecule transfers an oxygen to the substrate, leading to the cleavage of the O–O bond.

Methods

DFT calculations were done with B3PW91 functional. 6-311G(df, p) basis set was used for C, O, and H and aug-cc-pVDZ-PP was used for gold atoms. Gaussian 09 software was used for the calculations. Multiwfn 3.7 dev was used for the quantum theory of atoms-in-molecules (QTAIM) investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Liu S, Amada Y, Tamura M, Nakagawa Y, Tomishige K (2014) One-pot selective conversion of furfural into 1, 5-pentanediol over a Pd-added Ir–Reo X/Sio 2 bifunctional catalyst. Green Chem 16:617–626

    Google Scholar 

  2. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513

    CAS  Google Scholar 

  3. Tachibana Y, Masuda T, Funabashi M, Kunioka M (2010) Chemical synthesis of fully biomass-based poly (butylene succinate) from inedible-biomass-based furfural and evaluation of its biomass carbon ratio. Biomacromol 11:2760–2765

    CAS  Google Scholar 

  4. Qiao Y, Theyssen N, Hou Z (2015) Acid-catalyzed dehydration of fructose to 5-(hydroxymethyl) furfural. Recyclable Catalysis 2:36–60

    Google Scholar 

  5. Kwon Y, de Jong E, Raoufmoghaddam S, Koper M (2013) Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in the absence and presence of glucose. Chemsuschem 6:1659–1667

    CAS  PubMed  Google Scholar 

  6. Du Z, Ma J, Wang F, Liu J, Xu J (2011) Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen. Green Chem 13:554–557

    CAS  Google Scholar 

  7. Yan N, Zhao C, Luo C, Dyson PJ, Liu H, Kou Y (2006) One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst. J Am Chem Soc 128:8714–8715

    CAS  PubMed  Google Scholar 

  8. Lan J, Chen Z, Lin J, Yin G (2014) Catalytic aerobic oxidation of renewable furfural to maleic anhydride and furanone derivatives with their mechanistic studies. Green Chem 16:4351–4358

    CAS  Google Scholar 

  9. Xu W, Xia Q, Zhang Y, Guo Y, Wang Y, Lu G (2011) Effective production of octane from biomass derivatives under mild conditions. Chemsuschem 4:1758–1761

    CAS  PubMed  Google Scholar 

  10. Xu W, Wang H, Liu X, Ren J, Wang Y, Lu G (2011) Direct catalytic conversion of furfural to 1, 5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co 2 Alo 4 catalyst. Chem Commun 47:3924–3926

    CAS  Google Scholar 

  11. Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A (2011) Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem Soc Rev 40:5266–5281

    CAS  PubMed  Google Scholar 

  12. Menegazzo F, Signoretto M, Pinna F, Manzoli M, Aina V, Cerrato G, Boccuzzi F (2014) Oxidative esterification of renewable furfural on gold-based catalysts: which is the best support? J Catal 309:241–247

    CAS  Google Scholar 

  13. Baeyer A, Villiger V (1899) Einwirkung Des Caro’schen Reagens Auf Ketone. Eur J Inorg Chem 32:3625–3633

    Google Scholar 

  14. Uyanik M, Ishihara K (2013) Baeyer-Villiger oxidation using hydrogen peroxide. ACS Catal 3:513–520

    CAS  Google Scholar 

  15. Alonso-Fagúndez N, Agirrezabal-Telleria I, Arias P, Fierro J, Mariscal R, Granados ML (2014) Aqueous-phase catalytic oxidation of furfural with H 2 O 2: high yield of maleic acid by using titanium silicalite-1. RSC Adv 4:54960–54972

    Google Scholar 

  16. Choudhary H, Nishimura S, Ebitani K (2012) Highly efficient aqueous oxidation of furfural to succinic acid using reusable heterogeneous acid catalyst with hydrogen peroxide. Chem Lett 41:409–411

    CAS  Google Scholar 

  17. Alonso-Fagúndez N, Granados ML, Mariscal R, Ojeda M (2012) Selective conversion of furfural to maleic anhydride and furan with Vox/Al2o3 catalysts. Chemsuschem 5:1984–1990

    PubMed  Google Scholar 

  18. Lohbeck K, Haferkorn H, Fuhrmann W, Fedtke N (2000) Maleic and fumaric acids. Ullmann’s encyclopedia of industrial chemistry

  19. Luo Z, Castleman Jr A, Khanna SN (2016) Reactivity of metal clusters. Chem Rev

  20. Heck RM, Farrauto RJ (2001) Automobile exhaust catalysts. Appl Catal A 221:443–457

    CAS  Google Scholar 

  21. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691

    CAS  PubMed  Google Scholar 

  22. Deluga G, Salge J, Schmidt L, Verykios X (2004) Renewable hydrogen from ethanol by autothermal reforming. Science 303:993–997

    CAS  PubMed  Google Scholar 

  23. Chen M, Goodman D (2004) The structure of catalytically active gold on titania. Science 306:252–255

    CAS  PubMed  Google Scholar 

  24. Zhang J, Sasaki K, Sutter E, Adzic R (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222

    CAS  PubMed  Google Scholar 

  25. Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B 88:1–24

    CAS  Google Scholar 

  26. Ma Z, Dai S (2011) Design of novel structured gold nanocatalysts. ACS Catal 1:805–818

    CAS  Google Scholar 

  27. Liu J (2016) Catalysis by supported single metal atoms. ACS Catal 7:34–59

    Google Scholar 

  28. Gates B (1995) Supported metal clusters: synthesis, structure, and catalysis. Chem Rev 95:511–522

    CAS  Google Scholar 

  29. Lopez N, Janssens T, Clausen B, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) On the origin of the catalytic activity of gold nanoparticles for low-temperature Co oxidation. J Catal 223:232–235

    CAS  Google Scholar 

  30. Kubo R (1962) Electronic properties of metallic fine particles. I. J Phys Soc Jpn 17:975–986

    CAS  Google Scholar 

  31. Issendorff BV, Cheshnovsky O (2005) Metal to insulator transitions in clusters. Annu Rev Phys Chem 56:549–580

    Google Scholar 

  32. Claus P, Brückner A, Mohr C, Hofmeister H (2000) Supported gold nanoparticles from quantum dot to mesoscopic size scale: effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J Am Chem Soc 122:11430–11439

    CAS  Google Scholar 

  33. Haruta M (1997) Size-and support-dependency in the catalysis of gold. Catal Today 36:153–166

    CAS  Google Scholar 

  34. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 C. Chem Lett 16:405–408

    Google Scholar 

  35. Xu Z, Xiao F-S, Purnell S, Alexeev O, Kawi S, Deutsch S, Gates B (1994) Size-dependent catalytic activity of supported metal clusters. Nature 372:346–348

    CAS  Google Scholar 

  36. Pembere A, Luo Z (2017) Jones oxidation of glycerol catalyzed by small gold clusters. Phys Chem Chem Phys. https://doi.org/10.1039/C6CP07941E

    Article  PubMed  Google Scholar 

  37. Nijhuis TA, Visser T, Weckhuysen BM (2005) Mechanistic study into the direct epoxidation of propene over gold/titania catalysts. J Phys Chem B 109:19309–19319

    CAS  PubMed  Google Scholar 

  38. Tsunoyama H, Sakurai H, Ichikuni N, Negishi Y, Tsukuda T (2004) Colloidal gold nanoparticles as catalyst for carbon− carbon bond formation: application to aerobic homocoupling of phenylboronic acid in water. Langmuir 20:11293–11296

    CAS  PubMed  Google Scholar 

  39. Boorman TC, Larrosa I (2011) Gold-mediated C-H bond functionalisation. Chem Soc Rev 40:1910–1925

    CAS  PubMed  Google Scholar 

  40. McEwan L, Julius M, Roberts S, Fletcher JC (2010) A review of the use of gold catalysts in selective hydrogenation reactions. Gold Bull 43

  41. Bond G (2009) Mechanisms of the gold-catalysed water-gas shift. Gold Bull 42:337–342

    CAS  Google Scholar 

  42. Rajesh R, Sujanthi E, Kumar SS, Venkatesan R (2015) Designing versatile heterogeneous catalysts based on Ag and Au nanoparticles decorated on chitosan functionalized graphene oxide. Phys Chem Chem Phys 17:11329–11340

    CAS  PubMed  Google Scholar 

  43. Cao HL, Huang HB, Chen Z, Karadeniz B, Lu J, Cao R (2017) Ultrafine silver nanoparticles supported on a conjugated microporous polymer as high-performance nanocatalysts for nitrophenol reduction. ACS Appl Mater Interfaces 9:5231–5236

    CAS  PubMed  Google Scholar 

  44. Molina LM et al (2011) Size-dependent selectivity and activity of silver nanoclusters in the partial oxidation of propylene to propylene oxide and acrolein: a joint experimental and theoretical study. Catal Today 160:116–130

    CAS  Google Scholar 

  45. Anthony M.S. Pembere, Hitler Louis, Haiming Wu (2023) Probing the interaction of Ti clusters with isopropanol for ether production: an experimental and computational study Transition Metal Chemistry volume 48, pages227–235

  46. Pembere AM, Cui C, Wu H, Luo Z (2019) Small gold clusters catalyzing oxidant-free dehydrogenation of glycerol initiated by methene hydrogen atom transfer. Chin Chem Lett 30:1000–1004

    CAS  Google Scholar 

  47. Pembere AM, Yang M, Luo Z (2017) Small gold clusters catalyzing the conversion of glycerol to epichlorohydrin. Phys Chem Chem Phys 19:25840–25845

    CAS  PubMed  Google Scholar 

  48. Pembere AM, Wu H, An P, Magero D, Louis H, Luo Z (2022) Guerbet coupling of methanol catalysed by titanium clusters. Chem Phys Lett 139719

  49. Burke K, Perdew JP, Wang Y (1998) Derivation of a generalized gradient approximation: the Pw91 density functional. Springer, In Electronic density functional theory, pp 81–111

    Google Scholar 

  50. Lyalin A, Taketsugu T (2010) Reactant-promoted oxygen dissociation on gold clusters. J Phys Chem Lett 1:1752–1757

    CAS  Google Scholar 

  51. Lyalin A, Taketsugu T (2009) Cooperative adsorption of O2 and C2h4 on small gold clusters. J Phys Chem C 113:12930–12934

    CAS  Google Scholar 

  52. Lyalin A, Taketsugu T (2010) Adsorption of ethylene on neutral, anionic, and cationic gold clusters. J Phys Chem C 114:2484–2493

    CAS  Google Scholar 

  53. Li J, Li X, Zhai H-J, Wang L-S (2003) Au20: a tetrahedral cluster. Science 299:864–867

    CAS  PubMed  Google Scholar 

  54. Idrobo JC, Walkosz W, Yip SF, Öğüt S, Wang J, Jellinek J (2007) Static polarizabilities and optical absorption spectra of gold clusters (Au N, N= 2–14 and 20) from first principles. Phys Rev B 76:205422

    Google Scholar 

  55. Xiao L, Tollberg B, Hu X, Wang L (2006) Structural study of gold clusters. J Chem Phys 124:114309

    PubMed  Google Scholar 

  56. Dill JD, Pople JA (1975) Self-consistent molecular orbital methods. Xv. Extended Gaussian-type basis sets for lithium, beryllium, and boron. J Chem Phys 62:2921–2923

    CAS  Google Scholar 

  57. Pyykkö P (2004) Theoretical chemistry of gold. Angew Chem Int Ed 43:4412–4456

    Google Scholar 

  58. Figgen D, Peterson KA, Dolg M, Stoll H (2009) Energy-consistent pseudopotentials and correlation consistent basis sets for the 5 D elements Hf–Pt. J Chem Phys 130:164108

    PubMed  Google Scholar 

  59. Peterson KA, Puzzarini C (2005) Systematically convergent basis sets for transition metals. Ii. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor Chem Acc 114:283–296

    CAS  Google Scholar 

  60. Miertus S, Tomasi J (1982) Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem Phys 65:239–245

    CAS  Google Scholar 

  61. Glendening E, Reed A, Carpenter J, Weinhold F (1998) Nbo Version 3.1, Tci. University of Wisconsin, Madison 65

  62. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    PubMed  Google Scholar 

  63. Li X, Jia P, Wang T (2016) Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal 6:7621–7640

    CAS  Google Scholar 

  64. Xie Y, Huang Y, Wu C, Yuan W, Xia Y, Liu X, Wang H (2018) Iron-based metalloporphyrins as efficient catalysts for aerobic oxidation of biomass derived furfural into maleic acid Mol. Catal 452:20–27

    CAS  Google Scholar 

  65. Huang Y, Wu C, Yuan W, Xia Y, Liu X, Yang H, Wang H (2017) Catalytic aerobic oxidation of biomass-based furfural into maleic acid in aqueous phase with metalloporphyrin catalysts. J Chin Chem Soc 64:786–794

    CAS  Google Scholar 

  66. Lv G, Chen C, Lu B, Li J, Yang Y, Chen C, Deng T, Zhu Y, Hou X (2016) Vanadium-oxo immobilized onto Schiff base modified graphene oxide for efficient catalytic oxidation of 5-hydroxymethylfurfural and furfural into maleic anhydride. RSC Adv 6:101277–101282

    CAS  Google Scholar 

  67. Sotak T, Hronec M, Gal M, Dobrocka E, Skriniarova J (2017) Aqueous-phase oxidation of furfural to maleic acid catalyzed by copper phosphate catalysts Catal. Lett 147:2714–2723

    CAS  Google Scholar 

  68. Lou Y, Marinkovic S, Estrine B, Qiang W, Enderlin G (2020) Oxidation of furfural and furan derivatives to maleic acid in the presence of a simple catalyst system based on acetic acid and TS-1 and hydrogen peroxide. ACS Omega 5:2561–2568

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nguyen CV, Boo JR, Liu C-H, Ahamad T, Alshehri SM, Matsagar BM, Wu KCW (2020) Catal. Sci Technol 10:1498–1506

    Google Scholar 

  70. Yu Q, Bai R, Wang F, Zhang Q, Sun Y, Zhang Y, Qin L, Wang Z, Yuan Z (2020) Oxidation of biomass-derived furans to maleic acid over nitrogen-doped carbon catalysts under acid-free conditions. J Chem Technol Biotechnol 95:751–757

    CAS  Google Scholar 

  71. Zhang H, Wang S, Zhang H, Clark JH, Cao F (2021) A biomass-derived metal-free catalyst doped with phosphorus for highly efficient and selective oxidation of furfural into maleic acid. Green Chem 23:1370–1381

    CAS  Google Scholar 

  72. Yang T, Li W, Liu Q, Su M, Zhang T, Ma J (2019) Synthesis of maleic acid from biomass-derived furfural in the presence of KBr/graphitic carbon nitride (gC 3 N 4) catalyst and hydrogen peroxide. Bioresour 14:5025–5044

    CAS  Google Scholar 

  73. Yang T, Li W, Ogunbiyi AT (2021) Recent advances in the conversion of furfural into bio-chemicals through chemo-and bio-catalysisMol. Catal 504:111488

    CAS  Google Scholar 

  74. Malibo PM, Makgwane PR, Baker PG (2020) Heterostructured redox-active V2O5/SnO2 oxide nanocatalyst for aqueous-phase oxidation of furfural to renewable maleic acid. ChemistrySelect 5:6255–6267

    CAS  Google Scholar 

  75. Zhao X, Kong X, Wang F, Fang R, Li Y (2021) Metal sub-nanoclusters confined within hierarchical porous carbons with high oxidation activity. Angew Chem Int Ed 60:10842–10849

    CAS  Google Scholar 

  76. Vorotnikov V, Mpourmpakis G, Vlachos DG (2012) Dft study of furfural conversion to furan, furfuryl alcohol, and 2-methylfuran on Pd (111). ACS Catal 2:2496–2504

    CAS  Google Scholar 

  77. Bhogeswararao S, Srinivas D (2015) Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. J Catal 327:65–77

    CAS  Google Scholar 

  78. Shekhar R, Barteau MA, Plank RV, Vohs JM (1997) Adsorption and reaction of aldehydes on Pd surfaces. J Phys Chem B 101:7939–7951

    CAS  Google Scholar 

  79. Bader RFJAOCR (1985) Atoms in molecules 18:9–15

Download references

Funding

This work was also financially supported by the Key Research Program of Frontier Sciences (CAS, Grant QYZDB-SSW-SLH024) and the National Natural Science Foundation of China (Grant No. 21722308). Theoretical calculations were done using the facilities at the Center for High Performance Computing, South Africa.

Author information

Authors and Affiliations

Authors

Contributions

A.P: performing experiments and drafting the manuscript.

H.L: theoretical calculations.

H.W: reviewing the manuscript.

Corresponding authors

Correspondence to Anthony M. S. Pembere or Haiming Wu.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 399 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pembere, A.M.S., Louis, H. & Wu, H. Mechanism and dynamics of Baeyer–Villiger oxidation of furfural to maleic anhydride in presence of H2O2 and Au clusters. J Mol Model 29, 359 (2023). https://doi.org/10.1007/s00894-023-05764-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05764-5

Keywords

Navigation