Skip to main content
Log in

Prospective utilization of boron nitride and beryllium oxide nanotubes for Na, Li, and K-ion batteries: a DFT-based analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

In the present work, we investigated the adsorption mechanism of natural sodium (Na), potassium (K), and lithium (Li) atoms and their respective ion on two nanostructures: boron-nitride nanotubes (BNNTs) and beryllium-oxide nanotubes (BeONTs). The main goal of this research is to calculate the gain voltage for Na, K, and Li ionic batteries. Density function theory (DFT) calculations indicated that the adsorption energy between Na + is higher than that of the other cations, and this is particularly clear in the BeONT. Furthermore, gain voltage calculations showed that BNNTs generate a higher potential than BeONTs, with the most significant difference observed in BNNT/Na + . This research provides theoretical insights into the potential uses of these nanostructures as anodes in Na, K, and Li-ion batteries.

Method

Density function theory used to compute the ground state properties for BeONT and BNNT with and without selected atoms and their ions (Li, K, and Na). B3LYP used for exchange correlation between electrons and ions, and 6-31G* basis set used for all atoms and ions. Gauss Sum 2.2 software used for estimate the density of state (DOS) for all structure under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References  

  1. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    CAS  Google Scholar 

  2. Cheekati S, Xing Y, Zhuang Y, Huang H (2011) Graphene platelets and their manganese composites for lithium-ion batteries. ECS Trans 33(39):23

    CAS  Google Scholar 

  3. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451(7179):652–657

    CAS  PubMed  Google Scholar 

  4. Zhang Q et al (2019) One-dimensional Fe7S8@ C nanorods as anode materials for high-rate and long-life lithium-ion batteries. App Surf Sci 473:799–806

    CAS  Google Scholar 

  5. Xiao Z, Yang Z, Li Z, Li P, Wang R (2019) Synchronous gains of areal and volumetric capacities in lithium–sulfur batteries promised by flower-like porous Ti3C2T x matrix. ACS nano 13(3):3404–3412

    CAS  PubMed  Google Scholar 

  6. Kaloni TP, Cheng Y, Kahaly MU, Schwingenschlögl U (2012) Charge carrier density in Li-intercalated graphene. Chem Phys Lett 534:29–33

    CAS  Google Scholar 

  7. Kim H-J et al (2020) A comprehensive review of Li-ion battery materials and their recycling techniques. Electronics 9(7):1161

    CAS  Google Scholar 

  8. Li H, Yin H, Wang K, Cheng S, Jiang K, Sadoway DR (2016) Liquid metal electrodes for energy storage batteries. Adv Energy Mater 6(14):1600483

    Google Scholar 

  9. Chayambuka K, Mulder G, Danilov DL, Notten PH (2020) From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv Energy Mater 10(38):2001310

    CAS  Google Scholar 

  10. Luo J-M et al (2020) Hollow carbon nanospheres: syntheses and applications for post lithium-ion batteries. Mater Chem Front 4(8):2283–2306

    CAS  Google Scholar 

  11. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    CAS  PubMed  Google Scholar 

  12. Momeni MJ, Mousavi-Khoshdel M, Targholi E (2017) “First-principles investigation of adsorption and diffusion of Li on doped silicenes: prospective materials for lithium-ion batteries. Mater Chem Phys 192:125–130

    CAS  Google Scholar 

  13. Darwiche A, Dugas R, Fraisse B, Monconduit L (2016) “Reinstating lead for high-loaded efficient negative electrode for rechargeable sodium-ion battery. J Power Sources 304:1–8

    CAS  Google Scholar 

  14. Xiao L et al (2016) “Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 19:279–288

    CAS  Google Scholar 

  15. Liu Y et al (2016) “TiS2 nanoplates: a high-rate and stable electrode material for sodium ion batteries.” Nano Energy 20:168–175

    CAS  Google Scholar 

  16. Momeni MJ, Targholi E, Mousavi-Khoshdel M (2016) “Maleic anhydride as a promising anode material for Na-ion and Li-ion batteries with using a proper substrate: a first principles study.” Comput Mater Sci 124:166–172

    CAS  Google Scholar 

  17. Sharifi N, Ardjmand M, Ahangari MG, Ganji MD (2013) Si-decorated graphene: a superior media for lithium-ions storage. Structural Chemistry 24:1473–1483

    CAS  Google Scholar 

  18. Guo F et al (2019) Advanced lithium metal–carbon nanotube composite anode for high-performance lithium–oxygen batteries. Nano Lett 19(9):6377–6384

    CAS  PubMed  Google Scholar 

  19. Zheng S et al (2017) Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. Energ Storage Mater 6:70–97

    Google Scholar 

  20. Wang L, Hu J, Yu Y, Huang K, Hu Y (2020) Lithium-air, lithium-sulfur, and sodium-ion, which secondary battery category is more environmentally friendly and promising based on footprint family indicators? J Clean Prod 276:124244

    CAS  Google Scholar 

  21. Kahaly MU, Waghmare UV (2007) Vibrational properties of single-wall carbon nanotubes: a first-principles study. J Nanosci Nanotechnol 7(6):1787–1792

    CAS  PubMed  Google Scholar 

  22. UpadhyayKahaly M, Waghmare UV (2007) Size dependence of thermal properties of armchair carbon nanotubes: a first-principles study. Applied physics letters 91(2):023112

    Google Scholar 

  23. Behmagham F, Vessally E, Massoumi B, Hosseinian A, Edjlali L (2016) A computational study on the SO2 adsorption by the pristine, Al, and Si doped BN nanosheets. Superlattice Microst 100:350–357

    CAS  Google Scholar 

  24. Lee SW et al (2010) High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nanotechnol 5(7):531–537

    CAS  PubMed  Google Scholar 

  25. Hardikar RP, Das D, Han SS, Lee K-R, Singh AK (2014) Boron doped defective graphene as a potential anode material for Li-ion batteries. Phys Chem Chem Phys 16(31):16502–16508

    CAS  PubMed  Google Scholar 

  26. Kostoglou N et al (2020) Boron nitride nanotubes versus carbon nanotubes: a thermal stability and oxidation behavior study. Nanomaterials 10(12):2435

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kahaly MU, Waghmare UV (2008) Contrast in the electronic and magnetic properties of doped carbon and boron nitride nanotubes: a first-principles study. J Phys Chem C 112(10):3464–3472

    CAS  Google Scholar 

  28. Golberg D et al (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4(6):2979–2993

    CAS  PubMed  Google Scholar 

  29. Maselugbo AO, Harrison HB, Alston JR (2022) Boron nitride nanotubes: a review of recent progress on purification methods and techniques. J Mater Res 37:4438–4458

    CAS  Google Scholar 

  30. Baima J, Erba A, Rérat M, Orlando R, Dovesi R (2013) Beryllium oxide nanotubes and their connection to the flat monolayer. J Phys Chem C 117(24):12864–12872

    CAS  Google Scholar 

  31. Roberto-Neto O, de Carvalho EFV (2020) A DFT and wave function theory study of hydrogen adsorption on small beryllium oxide clusters. Theoret Chem Accounts 139:1–10

    Google Scholar 

  32. Dehaghani MZ et al (2020) Fracture toughness and crack propagation behavior of nanoscale beryllium oxide graphene-like structures: a molecular dynamics simulation analysis. Eng Fract Mech 235:107194

    Google Scholar 

  33. Huang XL, Wang Y-X, Chou S-L, Dou SX, Wang ZM (2021) Materials engineering for adsorption and catalysis in room-temperature Na–S batteries. Energy Environ Sci 14(7):3757–3795

    CAS  Google Scholar 

  34. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB (2014) Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 6(14):11173–11179

    CAS  PubMed  Google Scholar 

  35. Ding X, Huang Y, Li G, Tang Y, Li X, Huang Y (2017) Phosphorus nanoparticles combined with cubic boron nitride and graphene as stable sodium-ion battery anodes. Electrochimica Acta 235:150–157

    CAS  Google Scholar 

  36. Demiroglu I, Peeters FM, Gulseren O, Çakır D, Sevik C (2019) Alkali metal intercalation in MXene/graphene heterostructures: a new platform for ion battery applications. The journal of physical chemistry letters 10(4):727–734

    CAS  PubMed  Google Scholar 

  37. Tyagi N, Jaiswal NK (2022) Enhancing the performance of BN nanosheets as promising anode material for Li-ion batteries with carbon-doping. Journal of Molecular Graphics and Modelling 115:108213

    CAS  PubMed  Google Scholar 

  38. Al-Sanjari HA et al (2022) Exploring the role of Stone-Wales defect in boron nitride nano-sheet as a anode Mg-ion batteries. Inorg Chem Commun 146:110098

    Google Scholar 

  39. Al-Seady MA, Ahmed E, Abduljalil HM, Kahewish AA-R (2021) Studying the adsorption energy of CO gas molecule in different nano-systems using density function theory. Egypt J Chem 64(5):2607–2612

    Google Scholar 

  40. Zare K, Shadmani N (2013) Comparison of drug delivery systems: nanotube and p-Sulphonatocalix [4] arene, by density functional theory. J Nanostruct Chem 3:1–6

    Google Scholar 

  41. Al-Seady MA, Grmasha RA, Al-Aaraji NA-H, Abduljalil HM (2021) Investigation adsorption mechanism of methane gas in graphene and copper doped nano-ribbon using density function theory. Journal of Physics: Conference Series. IOP Publishing 1879(3):1–7

  42. Mohammadzaheri M, Jamehbozorgi S, Ganji MD, Rezvani M, Javanshir Z (2023) Toward functionalization of ZnO nanotubes and monolayers with 5-aminolevulinic acid drugs as possible nanocarriers for drug delivery: a DFT based molecular dynamic simulation. Phys Chem Chem Phys 25(32):21492–21508

    CAS  PubMed  Google Scholar 

  43. Pasdar H, ElmiFard N, Rezvani M (2023) Fabrication of MoS2/Bi2S3 heterostructure for photocatalytic degradation of metronidazole and cefalexin and antibacterial applications under NIR light: experimental and theoretical approach. Applied Physics A 129(5):380

    CAS  Google Scholar 

  44. Kulpa-Greszta M, Tomaszewska A, Dziedzic A, Rzeszutek I, Pązik R (2023) Heat generation on Fe3O4@ SiO2@ Au core-shell structures using the synergy of an alternating magnetic field and NIR laser light within Ist biological optical window. Mater Today Commun 35:105513

    CAS  Google Scholar 

  45. Al-Seady MA, Abdul Wahhab NA, Abbood HI, Abduljlil HM (2021) DFT study of chemical adsorption of NO2 gas on graphene nano material. Materials Science Forum. Trans Tech Publ 1039:391–397

  46. Beheshtian J, Peyghan AA, Bagheri Z (2012) Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sensors Actuators B: Chem 171:846–852

    Google Scholar 

  47. Selmi T et al (2018) Physical meaning of the parameters used in fractal kinetic and generalised adsorption models of Brouers–Sotolongo. Adsorption 24:11–27

    CAS  Google Scholar 

  48. Ma L-C, Zhao H-S, Yan W-J (2013) Structural, electronic and magnetic properties of linear monoatomic chains adsorption on beryllium oxide nanotube: first-principle study. J Magn Magn Mater 330:174–180

    CAS  Google Scholar 

  49. Mashhadzadeh AH, Ahangari MG, Dadrasi A, Fathalian M (2019) Theoretical studies on the mechanical and electronic properties of 2D and 3D structures of beryllium-oxide graphene and graphene nanobud. Applied Surface Science 476:36–48

    Google Scholar 

  50. Bergmann CP, Machado FM (2015) Carbon nanomaterials as adsorbents for environmental and biological applications (pp 1–105). New York: Springer International Publishing

  51. Hosseinian A, Khosroshahi ES, Nejati K, Edjlali E, Vessally E (2017) A DFT study on graphene, SiC, BN, and AlN nanosheets as anodes in Na-ion batteries. J Mol Model 23:1–7

    CAS  Google Scholar 

  52. Xiao B, Li Y-C, Yu X-F, Cheng J-B (2016) Penta-graphene: a promising anode material as the Li/Na-ion battery with both extremely high theoretical capacity and fast charge/discharge rate. ACS Appl Mater Interfaces 8(51):35342–35352

    CAS  PubMed  Google Scholar 

  53. Meng YS, Arroyo-de Dompablo ME (2009) “First principles computational materials design for energy storage materials in lithium ion batterie. Energ Environ Sci 2(6):589–609

    CAS  Google Scholar 

  54. Nejati K, Hosseinian A, Edjlali L, Vessally E (2017) The effect of structural curvature on the cell voltage of BN nanotube based Na-ion batteries. J Mol Liq 229:167–171

    CAS  Google Scholar 

  55. Dolgopolova EA (2019) Metal-Organic Frameworks: Photophysics, Energy Transfer, and Electronic Structure. PhD Thesis. University of South Carolina

  56. El Gaafary M et al (2021) Synthesis, cytotoxic activity, crystal structure, DFT studies and molecular docking of 3-amino-1-(2, 5-dichlorophenyl)-8-methoxy-1 H-benzo [f] chromene-2-carbonitrile. Crystals 11(2):184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by Mohammed A. Al-Seady and Mousumi Upadhyay Kahaly; other authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Mohammed A. Al-Seady.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Seady, M.A., Abed, H.H., Alghazaly, S.M. et al. Prospective utilization of boron nitride and beryllium oxide nanotubes for Na, Li, and K-ion batteries: a DFT-based analysis. J Mol Model 29, 348 (2023). https://doi.org/10.1007/s00894-023-05752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05752-9

Keywords

Navigation