Skip to main content
Log in

Exploration of the structural, optoelectronic, magnetic, elastic, vibrational, and thermodynamic properties of molybdenum-based chalcogenides A2MoSe4 (A =Li, K) for photovoltaics and spintronics applications: a first-principle study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

In the present work, the cubic phase of the chalcogenide materials, i.e., A2MoSe4 (A =Li, K) is examined to explore the structural, optoelectronic, magnetic, mechanical, vibrational, and thermodynamic properties. The lattice parameters for Li2MoSe4 are found to be a= 7.62 Å with lattice angles of α=β=γ=90° whereas for K2MoSe4, a= 8.43 Å, and α=β=γ=90°. These materials are categorized as semiconductors because Li2MoSe4 and K2MoSe4 exhibit direct energy band gap worth 1.32 eV and 1.61 eV, respectively through HSE06 functional. The optical analysis has declared them efficient materials for optoelectronic applications because both materials are found to be effective absorbers of ultraviolet radiations. These materials are noticed to be brittle while possessing anisotropic behavior for various mechanical applications. The vibrational properties are explored to check the thermal stability of the materials. On the basis of thermodynamics and heat capacity response, Li2MoSe4 is more stable than K2MoSe4. The results of our study lay the groundwork for future research on the physical characteristics of ternary transition metal chalcogenides (TMC).

Methods

These physical properties are explored for the first time while using a first-principles approach based on density functional theory (DFT) in the framework of Cambridge Serial Total Energy Package (CASTEP) by Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) functional. However, GGA+U and HSE06 are also employed to improve electronic properties. Kramers–Kronig relations are used to evaluate the dielectric function with a smearing value of 0.5 eV. Voigt-Reuss-Hill approximation is used for seeking the elastic response of these materials. The thermodynamic response is sought by harmonic approximation. The density functional perturbation theory (DFPT) approach is used for investigating atomic vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Lu JM, Zheliuk O, Leermakers I, Yuan NF, Zeitler U, Law KT, Ye J (2015) Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350(6266):1353–1357

    CAS  PubMed  Google Scholar 

  2. Lai X, Zhang H, Wang Y, Wang X, Zhang X, Lin J, Huang F (2015) Observation of superconductivity in tetragonal FeS. J Am Chem Soc 137(32):10148–10151

    CAS  PubMed  Google Scholar 

  3. Imai H, Shimakawa Y, Kubo Y (2001) Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition. Phys Rev B 64(24):241104

    Google Scholar 

  4. Wu J, Schmidt H, Amara KK, Xu X, Eda G, Ozyilmaz B (2014) Large thermoelectricity via variable range hopping in chemical vapor deposition grown single-layer MoS2. Nano Lett 14(5):2730–2734

    CAS  PubMed  Google Scholar 

  5. Sugai S (1985) Lattice vibrations in the charge-density-wave states of layered transition metal dichalcogenides. Phys. Status Solidi B Basic Res 129(1):13–39

    CAS  Google Scholar 

  6. Solorza-Feria O, Ellmer K, Giersig M, Alonso-Vante N (1994) Novel low-temperature synthesis of semiconducting transition metal chalcogenide electrocatalyst for multielectron charge transfer: molecular oxygen reduction. Electrochim Acta 39(11-12):1647–1653

    CAS  Google Scholar 

  7. Chia X, Sofer Z, Luxa J, Pumera M (2017) Layered noble metal dichalcogenides: tailoring electrochemical and catalytic properties. ACS Appl Mater Interfaces 9(30):25587–25599

    CAS  PubMed  Google Scholar 

  8. Sakamoto T, Wakeshima M, Hinatsu Y, Matsuhira K (2007) Charge-density-wave superconductor Bi2Rh3Se2. Phys Rev B 75(6):060503

    Google Scholar 

  9. Robbins M, Willens RH, Miller RC (1967) Superconductivity in the spinels CuRh2S4 and CuRh2Se4. Solid State Commun 5(12):933–934

    CAS  Google Scholar 

  10. Trump BA, Tutmaher JA, McQueen TM (2015) Anion–anion bonding and topology in ternary iridium seleno–stannides. Inorg Chem 54(24):11993–12001

    CAS  PubMed  Google Scholar 

  11. Guo Z, Sun F, Yuan W (2017) Chemical intercalations in layered transition metal chalcogenides: syntheses, structures, and related properties. Cryst Growth Des 17(4):2238–2253

    CAS  Google Scholar 

  12. Rouxel J (1979) Alkali metal intercalation compounds of transition metal chalcogenides: TX2, TX3 and TX4 chalcogenides. Intercalated Layered Materials. Springer Netherlands, Dordrecht, pp 201–250

    Google Scholar 

  13. Murphy DW, Sunshine SA, Zahurak SM (1987) Preparation methods for alkali metal intercalation compounds of oxides and chalcogenides. Chemical Physics of Intercalation. Springer US, Boston, MA, pp 173–179

    Google Scholar 

  14. Sturza M, Malliakas CD, Bugaris DE, Han F, Chung DY, Kanatzidis MG (2014) NaCu6Se4: a layered compound with mixed valency and metallic properties. Inorg Chem 53(22):12191–12198

    CAS  PubMed  Google Scholar 

  15. Sturza M, Bugaris DE, Malliakas CD, Han F, Chung DY, Kanatzidis MG (2016) Mixed-valent NaCu4Se3: a two-dimensional metal. Inorg Chem 55(10):4884–4890

    CAS  PubMed  Google Scholar 

  16. Chen H, Rodrigues JN, Rettie AJ, Song TB, Chica DG, Su X et al (2018) High hole mobility and nonsaturating giant magnetoresistance in the new 2d metal nacu4se4 synthesized by a unique pathway. J Am Chem Soc 141(1):635–642

    PubMed  Google Scholar 

  17. Ma N, Li YY, Chen L, Wu LM (2020) α-CsCu5Se3: discovery of a low-cost bulk selenide with high thermoelectric performance. J Am Chem Soc 142(11):5293–5303

    CAS  PubMed  Google Scholar 

  18. Stoliaroff A, Jobic S, Latouche C (2020) An ab initio perspective on the key defects of cscu5se3, a possible material for optoelectronic applications. J Phys Chem C 124(8):4363–4368

    CAS  Google Scholar 

  19. Buffiere M, Dhawale DS, El-Mellouhi F (2019) Chalcogenide materials and derivatives for photovoltaic applications. Energy Technology 7(11):1900819

    CAS  Google Scholar 

  20. Kuhar K, Crovetto A, Pandey M, Thygesen KS, Seger B, Vesborg PC et al (2017) Sulfide perovskites for solar energy conversion applications: computational screening and synthesis of the selected compound LaYS3. Energy Environ Sci 10(12):2579–2593

    CAS  Google Scholar 

  21. Perera S, Hui H, Zhao C, Xue H, Sun F, Deng C et al (2016) Chalcogenide perovskites–an emerging class of ionic semiconductors. Nano Energy 22:129–135

    CAS  Google Scholar 

  22. Niu, S., Huyan, H., Liu, Y., Yeung, M., Ye, K., Blankemeier, L., ... & Ravichandran, J. (2018). Band-gap control via structural and chemical tuning of transition metal perovskite chalcogenides. arXiv preprint arXiv:1804.09362.

  23. Sun Q, Chen H, Yin WJ (2018) Do chalcogenide double perovskites work as solar cell absorbers: a first-principles study. Chem Mater 31(1):244–250

    Google Scholar 

  24. Swarnkar A, Mir WJ, Chakraborty R, Jagadeeswararao M, Sheikh T, Nag A (2019) Are chalcogenide perovskites an emerging class of semiconductors for optoelectronic properties and solar cell? Chem Mater 31(3):565–575

    CAS  Google Scholar 

  25. Palos E, Reyes-Serrato A, Alonso-Nuñez G, Sánchez JG (2020) Modeling the ternary chalcogenide Na2MoSe4 from first-principles. J Phys Condens Matter 33(2):025501

    Google Scholar 

  26. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S et al (2013) Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Mater 1(1)

  27. Mebarki SH, Amrani B, Khodja KD, Khelil A (2017) The optoelectronic properties of a solar energy material: Ag2HgSnS4. IOP Conference Series: Materials Science and Engineering (Vol. 186, No. 1). IOP Publishing, p 012026

    Google Scholar 

  28. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K, Payne MC (2005) First principles methods using CASTEP. Zeitschrift für kristallographie-crystalline materials 220(5-6):567–570

    CAS  Google Scholar 

  29. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133

    Google Scholar 

  30. Hamann DR, Schlüter M, Chiang C (1979) Norm-conserving pseudopotentials. Phys Rev Lett 43(20):1494

    CAS  Google Scholar 

  31. Hamann DR (1989) Generalized norm-conserving pseudopotentials. Phys Rev B 40(5):2980

    CAS  Google Scholar 

  32. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43(3):1993

    CAS  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    CAS  PubMed  Google Scholar 

  34. Fatheema J, Fatima M, Monir NB, Khan SA, Rizwan S (2020) A comprehensive computational and experimental analysis of stable ferromagnetism in layered 2D Nb-doped Ti3C2 MXene. Phys E: Low-Dimens Syst Nanostructures 124:114253

    CAS  Google Scholar 

  35. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118(18):8207–8215

    CAS  Google Scholar 

  36. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188

    Google Scholar 

  37. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864

    Google Scholar 

  38. Rong Z, Zhi C, Jun C (2022) Ab initio calculation of mechanical, electronic and optical characteristics of chalcogenide perovskite BaZrS3 at high pressures. Acta Crystallogr C Struct Chem 78(10)

  39. Xiong K, Robertson J, Clark SJ (2006) Defect states in the high-dielectric-constant gate oxide LaAlO3. Appl Phys Lett 89(2)

  40. Ismaıl WB, Mainprice D (1998) An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296(1-2):145–157

    Google Scholar 

  41. Hadi MA, Roknuzzaman M, Chroneos A, Naqib SH, Islam AKMA, Vovk RV, Ostrikov K (2017) Elastic and thermodynamic properties of new (Zr3− xTix) AlC2 MAX-phase solid solutions. Comput Mater Sci 137:318–326

    CAS  Google Scholar 

  42. Gonze X, Lee C (1997) Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55(16):10355

    CAS  Google Scholar 

  43. Kral J, Lukes J, Netuka I, Vesely J (eds) (2011) Potential theory-ICPT 94: proceedings of the international conference on potential theory held in Kouty, Czech Republic, August 13-20, 1994. Walter de Gruyter

    Google Scholar 

  44. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci 30(9):244–247

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kumar A, Ahluwalia PK (2012) Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur Phys J B 85:1–7

    Google Scholar 

  46. Bala A, Kumar V (2021) Direct band gap halide-double-perovskite absorbers for solar cells and light emitting diodes: ab initio study of bulk and layers. Phys Rev Mater 5(9):095401

    CAS  Google Scholar 

  47. Lee IH, Oh YJ, Kim S, Lee J, Chang KJ (2016) Ab initio materials design using conformational space annealing and its application to searching for direct band gap silicon crystals. Comput Phys Commun 203:110–121

    CAS  Google Scholar 

  48. Germaneau É, Su G, Zheng QR (2013) Implementation of the modified Becke–Johnson meta-GGA functional in Quantum Espresso. Comput Phys Commun 184(7):1697–1700

    CAS  Google Scholar 

  49. Morales-García Á, Valero R, Illas F (2017) An empirical, yet practical way to predict the band gap in solids by using density functional band structure calculations. J Phys Chem C 121(34):18862–18866

    Google Scholar 

  50. Tran, F., Blaha, P., & Schwarz, K. (2007). Band gap calculations with Becke–Johnson exchange potential. J Phys Condens Matter, 19(19), 196208.

  51. Shao G (2009) Red shift in manganese-and iron-doped TiO2: a DFT+ U analysis. J Phys Chem C 113(16):6800–6808

    CAS  Google Scholar 

  52. Tompsett DA, Middlemiss DS, Islam MS (2012) Importance of anisotropic Coulomb interactions and exchange to the band gap and antiferromagnetism of β-MnO2 from DFT+ U. Phys Rev B 86(20):205126

    Google Scholar 

  53. Vines F, Lamiel-García O, Chul Ko K, Yong Lee J, Illas F (2017) Systematic study of the effect of HSE functional internal parameters on the electronic structure and band gap of a representative set of metal oxides. J Comput Chem 38(11):781–789

    CAS  PubMed  Google Scholar 

  54. Na GS, Jang S, Lee YL, Chang H (2020) Tuplewise material representation based machine learning for accurate band gap prediction. J Phys Chem A 124(50):10616–10623

    CAS  PubMed  Google Scholar 

  55. Bashyal K, Pyles CK, Afroosheh S, Lamichhane A, Zayak AT (2018) Empirical optimization of DFT+ U and HSE for the band structure of ZnO. J Phys Condens Matter 30(6):065501

    PubMed  Google Scholar 

  56. Xiao H, Tahir-Kheli J, Goddard III WA (2011) Accurate band gaps for semiconductors from density functional theory. The Journal of Physical Chemistry Letters 2(3):212–217

    CAS  Google Scholar 

  57. Jungwirth T, Marti X, Wadley P, Wunderlich J (2016) Antiferromagnetic spintronics. Nat Nanotechnol 11(3):231–241

    CAS  PubMed  Google Scholar 

  58. Caid M, Rached D, Al-Qaisi S, Rached Y, Rached H (2023) DFT calculations on physical properties of the lead-free halide-based double perovskite compound Cs2CdZnCl6. Solid State Commun 369:115216

    CAS  Google Scholar 

  59. Bouarissa A, Gueddim A, Bouarissa N, Maghraoui-Meherzi H (2020) Optical spectra of monolayer MoS2 from spin-polarized all electrons density-functional calculations. Optik 222:165477

    CAS  Google Scholar 

  60. Caid M, Rached H, Bentouaf A, Rached D, Rached Y (2021) High-throughput study of the structural, electronic, and optical properties of short-period (BeSe) m/(ZnSe) n superlattices based on DFT calculations. Computational Condensed Matter 29:e00598

    Google Scholar 

  61. Caid M, Rached D, Cheref O, Righi H, Rached H, Benalia S et al (2019) Full potential study of the structural, electronic and optical properties of (InAs) m/(GaSb) n superlattices. Computational Condensed Matter 21:e00394

    Google Scholar 

  62. Sabir B, Murtaza G, Khalil RA, Mahmood Q (2019) First principle study of electronic, mechanical, optical and thermoelectric properties of CsMO3 (M= Ta, Nb) compounds for optoelectronic devices. J Mol Graph Model 86:19–26

    CAS  PubMed  Google Scholar 

  63. Mahmood Q, Rashid M, Noor NA, Ashiq MGB, Ramay SM, Mahmood A (2019) Opto-electronic and thermoelectric properties of MgIn2X4 (X= S, Se) spinels via ab-initio calculations. J Mol Graph Model 88:168–173

    CAS  PubMed  Google Scholar 

  64. Wooten F (1972) Optical properties of solids. Academic Press

    Google Scholar 

  65. Hilal M, Rashid B, Khan SH, Khan A (2016) Investigation of electro-optical properties of InSb under the influence of spin-orbit interaction at room temperature. Mater Chem Phys 184:41–48

    CAS  Google Scholar 

  66. Bouarissa A, Gueddim A, Bouarissa N, Maghraoui-Meherzi H (2020) Optical response and magnetic moment of MoS2 material. Optik 208:164080

    CAS  Google Scholar 

  67. Caid M, Rached D (2020) First-principles calculations to investigate structural, electronic and optical properties of (AlSb) m/(GaSb) n superlattices. Mater Sci-Pol 38(2):320–327

    CAS  Google Scholar 

  68. Mattesini M, Ahuja R, Johansson B (2003) Cubic Hf3N4 and Zr3N4: a class of hard materials. Phys Rev B 68(18):184108

    Google Scholar 

  69. Mattesini M, Soler JM, Yndurain F (2006) Ab initio study of metal-organic framework-5 Zn4O (1, 4− benzenedicarboxylate) 3: an assessment of mechanical and spectroscopic properties. Phys Rev B 73(9):094111

    Google Scholar 

  70. Eriksson, O. (2004). Electronic structure calculations of phase stability: cohesive and elastic properties.

    Google Scholar 

  71. Gueddim A, Bouarissa N, Gacem L, Villesuzanne A (2018) Structural phase stability, elastic parameters and thermal properties of YN from first-principles calculation. Chin J Phys 56(5):1816–1825

    CAS  Google Scholar 

  72. Nazir S, Mahmood I, Noor NA, Laref A, Sajjad M (2019) Ab-initio simulations of MgTiO3 oxide at different pressure. High Energy Density Phys 33:100715

    Google Scholar 

  73. Qureshi MW, Ma X, Tang G, Paudel R (2020) Structural stability, electronic, mechanical, phonon, and thermodynamic properties of the M2GaC (M= Zr, Hf) max phase: an AB initio calculation. Materials 13(22):5148

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mo Y, Rulis P, Ching WY (2012) Electronic structure and optical conductivities of 20 MAX-phase compounds. Phys Rev B 86(16):165122

    Google Scholar 

  75. Hussain MI, Khalil RA, Hussain F, Imran M, Rana AM, Kim S (2020) Investigations of structural, electronic and optical properties of YInO3 (Y= Rb, Cs, Fr) perovskite oxides using mBJ approximation for optoelectronic applications: a first principles study. Mater Sci Semicond Process 113:105064

    CAS  Google Scholar 

  76. Ali MA, Hossain MM, Islam AKMA, Naqib SH (2021) Ternary boride Hf3PB4: Insights into the physical properties of the hardest possible boride MAX phase. J Alloys Compd 857:158264

    CAS  Google Scholar 

  77. Murtaza G, Sajid A, Rizwan M, Takagiwa Y, Khachai H, Jibran M et al (2015) First principles study of Mg2X (X= Si, Ge, Sn, Pb): elastic, optoelectronic and thermoelectric properties. Mater Sci Semicond Process 40:429–435

    CAS  Google Scholar 

  78. Sofi SA, Yousuf S, Bhat TM, Nabi M, Singh S, Saleem Z et al (2019) Investigation of structural and mechanical properties of ferromagnetic Co2MnAs compound. AIP Conference Proceedings (Vol. 2115, No. 1). AIP Publishing

    Google Scholar 

  79. Wu SQ, Hou ZF, Zhu ZZ (2007) Ab initio study on the structural and elastic properties of MAlSi (M= Ca, Sr, and Ba). Solid State Commun 143(8-9):425–428

    CAS  Google Scholar 

  80. Hu WC, Liu Y, Li DJ, Zeng XQ, Xu CS (2013) Mechanical and thermodynamic properties of Al3Sc and Al3Li precipitates in Al–Li–Sc alloys from first-principles calculations. Phys B Condens Matter 427:85–90

    CAS  Google Scholar 

  81. Guo Y, Wang W, Huang H, Zhao H, Jing Y, Yi G et al (2020) Effect of doping Zn atom on the structural stability, mechanical and thermodynamic properties of AlLi phase in Mg–Li alloys from first-principles calculations. Philos Mag 100(14):1849–1867

    CAS  Google Scholar 

  82. The physics and chemistry of materials: 9780471057949, Joel I. Gersten, Frederick W. Smith ISBN: 978-0-471-05794-9

  83. Shein IR, Ivanovskii AL (2008) Elastic properties of mono-and polycrystalline hexagonal AlB2-like diborides of s, p and d metals from first-principles calculations. J Phys Condens Matter 20(41):415218

    Google Scholar 

  84. Wu ZJ, Zhao EJ, Xiang HP, Hao XF, Liu XJ, Meng J (2007) Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys Rev B 76(5):054115

    Google Scholar 

  85. Haines J, Leger JM, Bocquillon G (2001) Synthesis and design of superhard materials. Annu Rev Mater Res 31(1):1–23

    CAS  Google Scholar 

  86. Candan A, Akbudak S, Uğur Ş, Uğur G (2019) Theoretical research on structural, electronic, mechanical, lattice dynamical and thermodynamic properties of layered ternary nitrides Ti2AN (A= Si, Ge and Sn). J Alloys Compd 771:664–673

    CAS  Google Scholar 

  87. Naher MI, Naqib SH (2021) An ab-initio study on structural, elastic, electronic, bonding, thermal, and optical properties of topological Weyl semimetal TaX (X= P, As). Sci Rep 11(1):5592

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ledbetter H, Migliori A (2006) A general elastic-anisotropy measure. J Appl Phys 100(6)

  89. Slack GA, Tanzilli RA, Pohl RO, Vandersande JW (1987) The intrinsic thermal conductivity of AIN. J Phys Chem Solids 48(7):641–647

    CAS  Google Scholar 

  90. Mattesini M, Magnuson M, Tasnadi F, Höglund C, Abrikosov IA, Hultman L (2009) Elastic properties and electrostructural correlations in ternary scandium-based cubic inverse perovskites: a first-principles study. Phys Rev B 79(12):125122

    Google Scholar 

  91. Brivio F, Frost JM, Skelton JM, Jackson AJ, Weber OJ, Weller MT et al (2015) Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys Rev B 92(14):144308

    Google Scholar 

  92. Benedek NA, Fennie CJ (2013) Why are there so few perovskite ferroelectrics? J Phys Chem C 117(26):13339–13349

    CAS  Google Scholar 

  93. Friák M, Holec D, Šob M (2018) An ab initio study of mechanical and dynamical stability of MoSi2. J Alloys Compd 746:720–728

    Google Scholar 

  94. Li Z, Zhang Y, Peng C (2009) Ab initio study on the ground states, phase stability, and mechanical properties of the Au–Pt system. Solid State Commun 149(23-24):952–956

    CAS  Google Scholar 

  95. Da Silva EL, Skelton JM, Parker SC, Walsh A (2015) Phase stability and transformations in the halide perovskite CsSnI3. Phys Rev B 91(14):144107

    Google Scholar 

  96. Hussain MI, Khalil RA, Boota S, Hussain F, Imran M, Murtaza G et al (2020) The structural, electronic and dynamical investigations of NdMn2O5 and La2CoMnO6 for optoelectronic applications: a first principles study. Optik 204:164165

    CAS  Google Scholar 

  97. Khalil RMA, Hussain F, Rana AM, Imran M, Murtaza G (2019) Comparative study of polytype 2H-MoS2 and 3R-MoS2 systems by employing DFT. Physica E: low-dimensional Systems and Nanostructures 106:338–345

    Google Scholar 

  98. Coutinho SS, Tavares MS, Barboza CA, Frazão NF, Moreira E, Azevedo DL (2017) 3R and 2H polytypes of MoS2: DFT and DFPT calculations of structural, optoelectronic, vibrational and thermodynamic properties. J Phys Chem Solids 111:25–33

    CAS  Google Scholar 

  99. Atkins PW, de Paula J, Keeler MA (2018) Physical chemistry11th edn. Oxford University Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Iqbal Hussain.

Ethics declarations

Ethical approval

This declaration is “not applicable”.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M., Khalil, R.A., Hussain, M.I. et al. Exploration of the structural, optoelectronic, magnetic, elastic, vibrational, and thermodynamic properties of molybdenum-based chalcogenides A2MoSe4 (A =Li, K) for photovoltaics and spintronics applications: a first-principle study. J Mol Model 29, 347 (2023). https://doi.org/10.1007/s00894-023-05751-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05751-w

Keywords

Navigation