Skip to main content
Log in

Comparative investigations of structural, electronic, optical, and thermoelectric properties of pure and 2 at. % Al-doped ZnO

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

We comparatively investigate the properties of pure ZnO and 2 at. % Al doping concentration of ZnO, AZO, as potential candidates for specific applications.

Methods

Calculations were carried out, using Wien2k package, to deduce structural, electronic, optical thermoelectric, and properties of both ZnO and AZO materials via the combination of GGA and mBJ approximations.

Results

It is shown that Al doping of ZnO (AZO) improves its optical properties; the deduced direct fundamental gap is enhanced due to the Burstein–Moss effect. Moreover, the dielectric function, at lower energies, confirms the existence of an extra strong fluctuation in the dispersive real part ɛ1(ω) and a high peak for absorptive imaginary parts ɛ2(ω) which are due to a variation in specific molecular bonding and the transition between the occupied and the non-occupied states. The critical point, observed at 2.81 eV for pure ZnO, is shifted to 3.3 eV in 2 at. % AZO, confirming a larger optical band gap. The reflectivity values slightly decreased for 2% AZO. The investigation of thermoelectric parameters as a function of chemical potential at different temperatures ranging from 300 to 900°C showed that these structures can be considered for good thermoelectric devices with (i) high absolute values of Seebeck coefficient: ׀SZnO׀ = 1.16 mV/K and ׀SAZO׀ = 0.746 mV/K, (ii) no effect of temperature on electrical conductivity but a strong effect on thermal conductivity, (iii) a high value approaching unity for the figure of merit. Hence, these properties and their improvements, introduced by Al doping of ZnO, lead specific and more uses in optoelectronics, energy, and piezoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Galazka Z (2020) Transparent semiconducting oxides: bulk crystal growth and fundamental properties. Jenny Stanford Publishing CRC Press

    Book  Google Scholar 

  2. Xu R, Min L, Qi Z, Zhang X, Jian J, Ji Y, Qian F, Fan J, Kan C, Wang H, Tian W, Li L, Li W, Yang H (2020) Perovskite transparent conducting oxide for the design of a transparent, flexible, and self-powered perovskite photodetector. ACS Appl Mater Interfaces 12(14):16462–16468. https://doi.org/10.1021/acsami.0c01298

    Article  CAS  PubMed  Google Scholar 

  3. Chavan GT, Kim Y, Khokhar MQ, Hussain SQ, Cho EC, Yi J, Ahmad Z, Rosaiah P, Jeon CW (2023) A brief review of transparent conducting oxides (TCO): the influence of different deposition techniques on the efficiency of solar cells. Nanomaterials 13(7):1226. https://doi.org/10.3390/nano13071226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ginley DS, Perkins JD, Ginley DS (2011) Handbook of transparent conductors. Springer, US, p 2011

    Book  Google Scholar 

  5. Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20(4):S35–S44. https://doi.org/10.1088/0268-1242/20/4/004

    Article  CAS  Google Scholar 

  6. Kathwate LH, Umadevi G, Kulal PM, Nagaraju P, Dubal DP, Nanjundan AK, Mote VD (2020) Ammonia gas sensing properties of Al doped ZnO thin films. Sens Actuators A Phys 313:112193. https://doi.org/10.1016/j.sna.2020.112193

    Article  CAS  Google Scholar 

  7. Vidor FF, Wirth GI, Hilleringmann U (2018) ZnO thin-film transistors for cost-efficient flexible electronics. Springer Inter Pub, Germany

    Book  Google Scholar 

  8. Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov M, Doğan S, Morkoç AH (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301. https://doi.org/10.1063/1.1992666

    Article  CAS  Google Scholar 

  9. Nagar S, Chakrabarti S (2017) Optimisation of ZnO thin films: implants, properties, and device fabrication. Springer, Singapore

    Book  Google Scholar 

  10. Meena J, Pavithra G, Anusha D, Kumar AS, Santhakumar K (2023) The green approach of ZnO NPs and its antioxidant, hemolytic, and photocatalytic activity and functionalized r-GO-ZnO for energy storage application. J Mater Sci Mater Electron 34(14):1131. https://doi.org/10.1007/s10854-023-10373-2

    Article  CAS  Google Scholar 

  11. Liu Y, Wan H, Islam M, Hasan KF, Cao S, Wang Z, Xiong Y, Lü S, Lü H, Mahmud S (2022) Liquid exfoliated Bi2S3 nanosheets as photocatalysts for degradation of azo dyes and detoxification of hexavalent chromium. Mater Sci Engin B 285:115898. https://doi.org/10.1016/j.mseb.2022.115898

    Article  CAS  Google Scholar 

  12. Arumugasamy SK, Ramakrishnan S, Yoo DJ, Govindaraju S, Yun K (2022) Tuning the interfacial electronic transitions of bi-dimensional nanocomposites (pGO/ZnO) towards photocatalytic degradation and energy application. Enviro Res 204:112050. https://doi.org/10.1016/j.envres.2021.112050

    Article  CAS  Google Scholar 

  13. Vidor FF, Wirth GI, Hilleringmann U (2018) ZnO thin-film transistors for cost-efficient flexible electronics. Springer International Publishing. https://doi.org/10.1007/978-3-319-72556-7

    Book  Google Scholar 

  14. Feng ZC (2012) Handbook of Zinc Oxide and Related Materials: two volume, devices and nano-engineering. CRC Press

    Book  Google Scholar 

  15. Gopalakrishnan S, Shankar R, Pazhanivel T, Priyadharshini M, Maiyalagan T (2003) Optoelectronic properties of hollow spheroid (ZnO)m quantum dots with nanotube (carbon and ZnO) nanocomposites in the solvent phase – A DFT/TD-DFT study. Mater Sci Engin B 287:116129. https://doi.org/10.1016/j.mseb.2022.116129

    Article  CAS  Google Scholar 

  16. Shanmugam NR, Muthukumar S, Prasad S (2017) A review on ZnO-based electrical biosensors for cardiac biomarker detection. Future Sci OA 3(4):FSO196. https://doi.org/10.4155/fsoa-2017-0006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luu SDN, Duong TA, Phan TB (2019) Effect of dopants and nanostructuring on the thermoelectric properties of ZnO materials. Adv Nat Sci: Nanosci Nanotechnol 10(2):023001. https://doi.org/10.1088/2043-6254/ab22ad

    Article  CAS  Google Scholar 

  18. Hashir P, Pradyumnanl PP, Wani AF, Kaur K (2022) Experimental and first-principles thermoelectric studies of bulk ZnO. Conf Ser: Mater Sci Eng 1263(1):12025. https://doi.org/10.1088/1757-899X/1263/1/012025

    Article  Google Scholar 

  19. Ashrafi A, Jagadish C (2007) Review of zincblende ZnO: stability of metastable ZnO phases. J Appl Phys 102(7):0711014. https://doi.org/10.1063/1.2787957

    Article  CAS  Google Scholar 

  20. Khuili M, Fazouan N, Abou El Makarim H (2015) DFT study of physical properties of wurtzite, zinc blende, and rocksalt phases of zinc oxide using GGA and TB-mBJ potential. 3rd International Renewable and Sustainable Energy Conference (IRSEC) 1–4, Marrakech. https://doi.org/10.1109/IRSEC.2015.7454962

  21. Shabbir S, Shaari A, Haq BU, Ahmed R, Ahmed M (2020) Investigations of novel polymorphs of ZnO for optoelectronic applications. Optik 206:164285. https://doi.org/10.1016/j.ijleo.2020.164285

    Article  CAS  Google Scholar 

  22. Feng C, Chen Z, Li W, Zhang F, Li X, Xu L, Sun M (2019) First-principle calculation of the electronic structures and optical properties of the metallic and nonmetallic elements-doped ZnO on the basis of photocatalysis. Physica B: Condens Matter 555:53–60. https://doi.org/10.1016/j.physb.2018.11.043

    Article  CAS  Google Scholar 

  23. Qi K, Xing X, Zada A, Li M, Wang Q, Liu SY, Wang G (2020) Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies. Ceram Int 46(2):1494–1502. https://doi.org/10.1016/j.ceramint.2019.09.116

    Article  CAS  Google Scholar 

  24. Hou Q, Jia XF, Xu ZC, Zhao CW, Qu LF (2018) Effects of Li doping and point defect on the magnetism of ZnO. Ceram Int 44(2):1376–1383. https://doi.org/10.1016/j.ceramint.2017.09.002

    Article  CAS  Google Scholar 

  25. Daksh D, Agrawal YK (2016) Rare earth-doped zinc oxide nanostructures: a review. Rev Nanosci Nanotechnol 5(1):1–27. https://doi.org/10.1166/rnn.2016.1071

    Article  CAS  Google Scholar 

  26. Ren J, Wu JX, Liu PP (2023) Controlling the electronic and magnetic properties of ZnO monolayer by rare-earth atoms substitutional doping. Physica B: Condens Matter 414661. https://doi.org/10.1016/j.physb.2023.414661

  27. Pathak TK, Swart HC, Kroon RE (2018) Structural and plasmonic properties of noble metal doped ZnO nanomaterials. Physica B: Condens Matter 535:114–118. https://doi.org/10.1016/j.physb.2017.06.074

    Article  CAS  Google Scholar 

  28. Hou Q, Xi DM, Li WL, Jia XF, Xu ZC (2018) First-principles research on the optical and electrical properties and mechanisms of In-doped ZnO. Physica B: Condensed Matter 537:258–266. https://doi.org/10.1016/j.physb.2018.02.026

    Article  CAS  Google Scholar 

  29. Wu M, Yu S, Chen G, He L, Yang L, Zhang W (2015) Structural, optical, and electrical properties of Mo-doped ZnO thin films prepared by magnetron sputtering. Appl Surf Sci 324:791–796. https://doi.org/10.1016/j.apsusc.2014.11.039

    Article  CAS  Google Scholar 

  30. Tsay CY, Cheng HC, Tung YT, Tuan WH, Lin CK (2008) Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol–gel method. Thin Solid Films 517(3):1032–1036. https://doi.org/10.1016/j.tsf.2008.06.030

    Article  CAS  Google Scholar 

  31. Yang J, Jiang Y, Li L, Gao M (2017) Structural, morphological, optical and electrical properties of Ga-doped ZnO transparent conducting thin films. Appl Surf Sci 421:446–452. https://doi.org/10.1016/j.apsusc.2016.10.079

    Article  CAS  Google Scholar 

  32. Li C, Hou Q (2018) Effects of Y doping with point defects on the ferromagnetic properties of ZnO (0001)-Zn polar surface. Appl Surf Sci 459:393–396. https://doi.org/10.1016/j.apsusc.2018.08.012

    Article  CAS  Google Scholar 

  33. Jia XF, Hou QY, Xu ZC, Qu LF (2018) Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle. J Magn Magn Mater 465:128–135. https://doi.org/10.1016/j.jmmm.2018.05.037

    Article  CAS  Google Scholar 

  34. Khuili M, Fazouan N, Abou El Makarim H, Atmani EH, Abbassi A, Rai DP (2020) (Li,F) co-doped ZnO: optoelectronic devices applications. Superlattices Microstruct 145:106645. https://doi.org/10.1016/j.spmi.2020.106645

    Article  CAS  Google Scholar 

  35. El Hallani G, Fazouan N, Liba A, Khuili M (2016) The effect of sol aging time on Structural and Optical properties of sol gel ZnO doped Al. J Phys: Conf Se 758(1):2021. https://doi.org/10.1088/1742-6596/758/1/012021

    Article  CAS  Google Scholar 

  36. Khuili M, Fazouan N, Abou El Makarim H, Atmani EH, Houmad M (2020) Improvement of optical properties of Mg doped ZnO by nanostructuring for applications in optoelectronics. Mater Res Express 7(2):025043. https://doi.org/10.1088/2053-1591/ab748b

    Article  CAS  Google Scholar 

  37. Li D, Huang JF, Cao LY, Jia-Yin LI, OuYang HB, Yao CY (2014) Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties. Ceram Int 40:2647–2653. https://doi.org/10.1016/j.ceramint.2013.10.061

    Article  CAS  Google Scholar 

  38. Anandh BA, Shankar Ganesh A, Sakthivel R, Tamilselvan K, Kannusamy R (2018) Structural, morphological and optical properties of aluminium doped ZnO thin film by dip-coating method. Orient J Chem 34(3):1619–1624 http://ir.psgcas.ac.in/id/eprint/254

    Article  CAS  Google Scholar 

  39. El hamali SO, Cranton WM, Kalfagiannis N, Hou X, Ranson R, Koutsogeorgis DC (2016) Enhanced electrical and optical properties of room temperature deposited Aluminium doped Zinc Oxide (AZO) thin films by excimer laser annealing. Opt Lasers Eng 80:45–51. https://doi.org/10.1016/j.optlaseng.2015.12.010

    Article  Google Scholar 

  40. Karim MR, Sheikh MRK, Yahya R, Salleh NM, Azzahari AD (2015) Synthesis of polymerizable liquid crystalline monomers and their side chain liquid crystalline polymers bearing azo-ester linked benzothiazole mesogen. Colloid Polym Sci 293:1923–1935. https://doi.org/10.1007/s00396-015-3578-8

    Article  CAS  Google Scholar 

  41. Yan X, Ma J, Xu H, Wang C, Liu Y (2016) Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes. J Physics D: Appl Phys 49(32):325103. https://doi.org/10.1088/0022-3727/49/32/325103

    Article  CAS  Google Scholar 

  42. Porrawatkul P, Nuengmatcha P, Kuyyogsuy A, Pimsen R, Rattanaburi P (2023) Effect of Na and Al doping on ZnO nanoparticles for potential application in sunscreens. J Photochem Photobiol B: Biol 240:112668. https://doi.org/10.1016/j.jphotobiol.2023.112668

    Article  CAS  Google Scholar 

  43. Zarhri Z, Dzul MBC, Ziat Y, Torrez LFJ, Oubram O, Ifguis O (2022) Comparative study of optical properties of ZnO Zinc blend and rock salt structures, TB- mBJ and GGA approximations. Physica B: Condens Matter 634:413798. https://doi.org/10.1016/j.physb.2022.413798

    Article  CAS  Google Scholar 

  44. Achehboune M, Khenfouch M, Boukhoubza I, Leontie L, Doroftei C, Carlescu A, Bulai G, Mothudi B, Zorkani I, Jorio A (2022) Microstructural, FTIR and Raman spectroscopic study of rare earth doped ZnO nanostructures. Mater Today: Proc 53:319–323. https://doi.org/10.1016/j.matpr.2021.04.144

    Article  CAS  Google Scholar 

  45. Singh R, Mukherjee SK (2022) Correlation of structural, electrical and optical properties of Al-doped ZnO TCOs. J Mater Sci: Mater Electron 33(9):6969–6980. https://doi.org/10.1007/s10854-022-07876-9

    Article  CAS  Google Scholar 

  46. Abd Hamid NE, Abdullah MH, Yusoff MZM, Azurahanim C, Abdullah C (2022) Simulation of metal contacts on the Al doped ZnO photoconductive sensor. Int J Electroactive Mater 10:12–17 https://www.electroactmater.com/index.php/volume-10-2022?id=60&subid=426

    Google Scholar 

  47. Doghmane NEA, Chettibi S, Challali F, Chelouche A, Touam T (2022) Confocal magnetron sputtering deposition of Cu/AZO bilayer structures: effect of Cu thickness on microstructural and optoelectronic properties. J Mater Sci: Mater Electron 33(36):26717–26727. https://doi.org/10.1007/s10854-022-09338-8

    Article  CAS  Google Scholar 

  48. Blaha P, Schwarz K, Madsen GH, Kvasnicka D, Luitz J (2001) wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties, Techn WIEN2K. Austria 60:1

    Google Scholar 

  49. Perdew JP, Burke K, Ernzerhof M (1996) Quantum theory group tulane university. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  50. Jellal I, Ahmoum H, Khaaissa Y, Nouneh K, Boughrara M, Fahoume M, Chopra S, Naja J (2019) Experimental and ab-initio investigation of the microstructure and optoelectronic properties of FCM–CVD-prepared Al-doped ZnO thin films. Appl Phys A 125:1–7. https://doi.org/10.1007/s00339-019-2947-4

    Article  CAS  Google Scholar 

  51. Tran F, Blaha P (2009) Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev lett 102(22):226401–226404. https://doi.org/10.1103/PhysRevLett.102.226401

    Article  CAS  PubMed  Google Scholar 

  52. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  53. Khuili M, Bounbaa M, Fazouan N, Elmakarim HA, Sadiki Y, Al-Qaisi S, Allaoui I, Maskar E, Chahid EH, Maher K, Abba EH (2023) First-principles study of structural, elastic, optoelectronic and thermoelectric properties of B-site-ordered quadruple perovskite Ba4Bi3NaO12. J Solid State Chem 322:123955. https://doi.org/10.1016/j.jssc.2023.123955

    Article  CAS  Google Scholar 

  54. Achehboune M, Khenfouch M, Boukhoubza I, Derkaoui I, Mothudi BM, Zorkani I, Jorio A (2021) Effect of Yb concentration on the structural, magnetic and optoelectronic properties of Yb doped ZnO: first principles calculation. Opt Quantum Electron 53:1–14. https://doi.org/10.21203/rs.3.rs-877060/v1

    Article  Google Scholar 

  55. Valdez LA, Caravaca MA, Casali RA (2019) Ab-initio study of elastic anisotropy, hardness and volumetric thermal expansion coefficient of ZnO, ZnS, ZnSe in wurtzite and zinc blende phases. J Phys Chem Solids 134:245–254. https://doi.org/10.1016/j.jpcs.2019.05.019

    Article  CAS  Google Scholar 

  56. Kisi EH, Elcombe MM (1989) u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction. Acta Crystallograph C: Cryst Struct Commun 45(12):1867–1870. https://doi.org/10.1107/S0108270189004269

    Article  Google Scholar 

  57. Farhat S, Rekaby M, Awad R (2018) Synthesis and characterization of Er-doped nano ZnO samples. J Supercond Nov Magn 31:3051–3061. https://doi.org/10.1007/s10948-017-4548-9

    Article  CAS  Google Scholar 

  58. Bouhouche S, Bensouici F, Toubane M, Azizi A, Otmani A, Chebout K, Kezzoula F, Tala-Ighil R, Bououdina M (2018) Effect of Er3+ doping on structural, morphological and photocatalytical properties of ZnO thin films. Mater Res Express 5(5):056407. https://doi.org/10.1088/2053-1591/aac4e8

    Article  CAS  Google Scholar 

  59. Naik EI, Naik HSB, Viswanath R, Kirthan BR, Prabhakara MC (2020) Effect of zirconium doping on the structural, optical, electrochemical and antibacterial properties of ZnO nanoparticles prepared by sol-gel method. Chem Data Collect 29:100505. https://doi.org/10.1016/j.cdc.2020.100505

    Article  CAS  Google Scholar 

  60. Meng Z, Mo X, Cheng X, Zhou Y, Tao X, Ouyang Y (2017) Interactions between Er dopant and intrinsic point defects of ZnO: a first-principles study. Mater Res Express 4-035903. https://doi.org/10.1088/2053-1591/aa6292

  61. Khuili M, Fazouan N, Abou El Makarim H, Atmani EH, Rai DP, Houmad M (2020) First-principles calculations of rare earth (RE=Tm, Yb, Ce) doped ZnO: Structural, optoelectronic, magnetic, and electrical properties. Vacuum 181:109603. https://doi.org/10.1016/j.vacuum.2020.109603

    Article  CAS  Google Scholar 

  62. John R, Padmavathi S (2016) Ab initio calculations on structural, electronic and optical properties of ZnO in wurtzite phase. Cryst Str Theory Appl 5(2):24–41. https://doi.org/10.4236/csta.2016.52003

    Article  CAS  Google Scholar 

  63. Desgreniers S (1998) High-density phases of ZnO: Structural and compressive parameters. Phys Rev B 58(21):14102. https://doi.org/10.1103/PhysRevB.58.14102

    Article  CAS  Google Scholar 

  64. Decremps F, Datchi F, Saitta AM, Polian A, Pascarelli S, Di Cicco A, Baudelet F (2003) Local structure of condensed zinc oxide. Phys Rev B 68(10):104101. https://doi.org/10.1103/PhysRevB.68.104101

    Article  CAS  Google Scholar 

  65. Charifi Z, Baaziz H, Hussain Reshak A (2007) Ab-initio investigation of structural, electronic and optical properties for three phases of ZnO compound. Phys Status Solidi (b) 244(9):3154–3167. https://doi.org/10.1002/pssb.200642471

    Article  CAS  Google Scholar 

  66. Karzel H, Potzel W, Köfferlein M, Schiessl W, Steiner M, Hiller U, Kalvius GM, Blaha P, Schwarz K, Pasternak MP (1996) Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. Phys Rev B 53(17):11425–11438. https://doi.org/10.1103/PhysRevB.53.11425

    Article  CAS  Google Scholar 

  67. Sivaganesh D, Saravanakumar S, Sivakumar V, Syed Ali KS, Akapo E, Alemayehu E, Rajajeyaganthan R, Saravanan R (2019) Structural, optical and charge density analysis of Al doped ZnO Materials. J Mater Sci: Mater Electron 30(3):2966–2974. https://doi.org/10.1007/s10854-018-00574-5

    Article  CAS  Google Scholar 

  68. Pham ATT, Vo PTN, Ta HKT, Pham NK, Lai HT, Tran HNT, Tran VC, Doan TLH, Park S, Phan TB (2020) Dopants and induced residual stress-controlled thermoelectric properties of ZnO thin films. Mater Sci Eng: B 261:114712. https://doi.org/10.1016/j.mseb.2020.114712

    Article  CAS  Google Scholar 

  69. Xiao H, Tahir-Kheli J, Goddard III WA (2011) Accurate band gaps for semiconductors from density functional theory. J Phys Chem Lett 2(3):212–217. https://doi.org/10.1021/jz101565j

    Article  CAS  Google Scholar 

  70. López-Mena ER, Ceballos-Sanchez O, Hooper TJN, Sanchez-Ante G, Rodríguez-Muñoz M, Renteria-Salcedo JA, Sanchez-Martinez A (2021) The effect of Yb doping on ZnO thin films obtained via a low-temperature spin coating method. J Mater Sci: Mater Electron 32:347–359. https://doi.org/10.1007/s10854-020-04785-7

    Article  CAS  Google Scholar 

  71. Alkahtani EA, Merad AE, Boufatah MR, Benosman A (2017) DFT investigation of structural, electronic and optical properties of pure and Er-doped ZnO: Modified Becke-Johnson exchange potential. Optik 128:274–280. https://doi.org/10.1016/j.ijleo.2016.10.032

    Article  CAS  Google Scholar 

  72. Dixit H, Saniz R, Lamoen D, Partoens B (2010) The quasiparticle band structure of zincblende and rocksalt ZnO. J Physics: Condens Matter 22:125505. https://doi.org/10.1088/0953-8984/22/12/125505

    Article  CAS  Google Scholar 

  73. Oba F, Togo A, Tanaka I, Paier J, Kress G (2008) Defect energetics in ZnO: a hybrid Hartree-Fock density functional study. Phys Rev B 77(2008):245202–245206 http://hdl.handle.net/2433/84635

    Article  Google Scholar 

  74. Boufatah MR, Merad AE (2014) Structural stability, elastic and electronic properties of zincblende (GaN)1/(ZnO)1 superlattice: Modified Becke–Johnson exchange potential. Mater Sci Semicond Process 19:179–185. https://doi.org/10.1016/j.mssp.2013.12.022

    Article  CAS  Google Scholar 

  75. Wang M, Lee KE, Hahn SH, Kim EJ, Kim S, Chung JS, Park C (2016) Optical and photoluminescent properties of sol-gel Al-doped ZnO thin films. Mater Lett 61(4-5):1118–1121. https://doi.org/10.1016/j.matlet.2006.06.065

    Article  CAS  Google Scholar 

  76. Burstein E (1954) Anomalous optical absorption limit in InSb. Phys Rev 93:632–633. https://doi.org/10.1103/PhysRev.93.632

    Article  CAS  Google Scholar 

  77. Moss T (1954) The interpretation of the properties of indium antimonide. Proc Phys Soc B 67:775–782. https://doi.org/10.1088/0370-1301/67/10/306

    Article  Google Scholar 

  78. Dixon SC, Scanlon DO, Carmalt CJ, Parkin IP (2016) n-Type doped transparent conducting binary oxides: an overview. J Mater Chem C 4(29):6946–6961. https://doi.org/10.1039/C6TC01881E

    Article  CAS  Google Scholar 

  79. Sernelius BE, Berggren KF, Jim ZC, Hamberg I, Granqvist CG (1988) Band-gap tailoring of ZnO by means of heavy Al doping. Phys Rev B 37:10244–10248. https://doi.org/10.1103/PhysRevB.37.10244

    Article  CAS  Google Scholar 

  80. Darma Y, Setiawan FG, Majidi MA, Rusydi A (2015) Theoretical investigation on electronic properties of ZnO crystals using DFT-based calculation method. Adv Mater Res 1112:41–44. https://doi.org/10.4028/www.scientific.net/AMR.1112.41

    Article  Google Scholar 

  81. Pachuau Z (2023) First principle study of electronic, optical and thermoelectric properties of CuInS 2 and CuInSe 2. Indian J Pure Appl Phys 61(2):108–114. https://doi.org/10.56042/ijpap.v61i2.67985

    Article  Google Scholar 

  82. Li L, Wang W, Liu H, Liu X, Song Q, Ren S (2009) First principles calculations of electronic band structure and optical properties of Cr-doped ZnO. J Phys Chem C 113(19):8460–8464. https://doi.org/10.1021/jp811507r

    Article  CAS  Google Scholar 

  83. Saha S, Sinha TP, Mookerjee A (2000) Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys Rev B 62(13):8828. https://doi.org/10.1103/PhysRevB.62.8828

    Article  CAS  Google Scholar 

  84. Reshak AH, Kityk IV, Ebothe J, Fedorchuk AO, Fedyna MF, Kamarudin H, Auluck S (2013) Crystallochemical affinity and optical functions of ZrGa2 and ZrGa3 compounds. J Alloys Compd 546:14–19. https://doi.org/10.1016/j.jallcom.2012.08.073

    Article  CAS  Google Scholar 

  85. Jin Z, Qiao L, Guo C, He Z, Liu L, Rong M (2016) First-priniciple study of electrical and optical properties of (Al,Sn) co-doped ZnO. Optik 127(4):1988–1992. https://doi.org/10.1016/j.ijleo.2015.10.224

    Article  CAS  Google Scholar 

  86. Li Y, Hou QY, Wang XH, Kang HJ, Yaer X, Li JB, Wang TM, Miao L, Wang J (2019) First-principles calculations and high thermoelectric performance of La–Nb doped SrTiO3 ceramics. J Mater Chem A 7(1):236–247. https://doi.org/10.1039/C8TA10079A

    Article  CAS  Google Scholar 

  87. Al-Qaisi S, Rached H, Alrebdi TA, Bouzgarrou S, Behera D, Mukherjee SK, Khuili M, Adam M, Verma AS, Ezzeldien M (2023) Study of mechanical, optical, and thermoelectric characteristics of Ba2XMoO6 (X = Zn, Cd) double perovskite for energy harvesting. J Comput Chem. https://doi.org/10.1002/jcc.27209

  88. Goldsmid HJ (2016) Introduction to Thermoelectricity. Springer-Verlag, Berlin

    Book  Google Scholar 

  89. Maskar E, Fakhim Lamrani A, Belaiche M, Es-Smairi A, Khuili M, Al-Qaisi S, Vu TV, Rai DP (2021) Electronic, magnetic, optical and transport properties of wurtzite-GaN doped with rare earth (RE= Pm, Sm, and Eu): First principles approach. Surf Interfaces 24:101051. https://doi.org/10.1016/j.surfin.2021.101051

    Article  CAS  Google Scholar 

  90. Ohtaki M (2010) Oxide thermoelectric materials for heat-to-electricity direct energy conversion. Kyushu University Global COE Program Novel Carbon Resources Sciences Newsletter, pp 3–8

    Google Scholar 

  91. Yang J, Xi L, Qiu W, Wu L, Shi X, Chen L, Singh DJ (2016) On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective. NPJ Comput Mater 2(1):1–17. https://doi.org/10.1038/npjcompumats.2015.15

    Article  CAS  Google Scholar 

  92. Siddique M, Rahman AU, Iqbal A, Haq BU, Azam S, Nadeem A, Qayyum A (2019) A systematic first-principles investigation of structural, electronic, magnetic, and thermoelectric properties of thorium monopnictides Th Pn (Pn= N, P, As): a comparative analysis of theoretical predictions of LDA, PBEsol, PBE-GGA, WC-GGA, and LDA+ U Methods. Int J Thermophys 40(104):1–21. https://doi.org/10.1007/s10765-019-2572-7

    Article  CAS  Google Scholar 

  93. Sun J, Wang HT, He J, Tian Y (2005) Ab initio investigations of optical properties of the high-pressure phases of ZnO. Phys Rev B 71(12):125132–125136. https://doi.org/10.1103/PhysRevB.71.125132

    Article  CAS  Google Scholar 

  94. Takeuchi T (2009) Conditions of electronic structure to obtain large dimensionless figure of merit for developing practical thermoelectric materials. Mater Trans 50(10):2359–2365. https://doi.org/10.2320/matertrans.M2009143

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NEAD, MD, and DB were involved in investigations and TT and SC in supervising. All authors have contributed and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Tahar Touam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doghmane, N.E.A., Chettibi, S., Doghmane, M. et al. Comparative investigations of structural, electronic, optical, and thermoelectric properties of pure and 2 at. % Al-doped ZnO. J Mol Model 29, 343 (2023). https://doi.org/10.1007/s00894-023-05750-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05750-x

Keywords

Navigation