Skip to main content
Log in

Mechanism of rectification and negative differential resistance in single-molecule junctions with asymmetric anchoring groups: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

This study aims to investigate the electronic transport properties of tetracene molecule connected to gold (Au) electrodes with asymmetric anchoring groups. More specifically, we investigate the effect of asymmetric electrode coupling on the rectification ratio of tetracene-based molecular device. To introduce coupling asymmetry in these junctions, one end of the tetracene molecule is terminated with thiol (−SH) or isocyanide (−NC) while the other end with amine (−NH2) or nitro (−NO2) anchoring group. The results indicate that the electronic transport behavior is affected by the nature of molecule-electrode coupling, and the rectification ratio can be modulated by a proper choice of the anchoring groups. We reveal that the tetracene molecule when connected with isocyanide and amine combination exhibits remarkable rectifying performance (with a rectification ratio of 74) in contrast with other configurations. Furthermore, a prominent negative differential resistance (NDR) feature is observed when the molecule is connected with thiol as one of the anchors. Our present findings with excellent rectifying performance and negative differential resistance pave a new roadmap for designing multifunctional molecular devices.

Methods

By applying non-equilibrium Green’s function (NEGF) formalism combined with density functional theory (DFT) Atomistic Tool Kit software package, the electronic transport properties of tetracene molecule connected to gold electrodes with asymmetric anchoring groups have been investigated. The calculations were performed using the Perdew-Burke-Ernzerhof (PBE) parameterization of DFT within generalized gradient approximation (GGA) exchange-correlation functional. To improve calculation precision and save computational efforts, the molecule and anchor groups were double-ζ (DZ) polarized, while single-ζ (SZ) polarized basis set was used for gold electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Tsutsui M, Teramae Y, Kurokawa S, Sakai A (2006) High-conductance states of single benzene dithiol molecules. Appl Phys Lett 89. https://doi.org/10.1063/1.2363995/129398

  2. Néel N, Kröger J, Limot L, Berndt R (2008) Conductance of oriented C60 molecules. Nano Lett 8:1291–1295. https://doi.org/10.1021/NL073074I

    Article  PubMed  Google Scholar 

  3. Mishchenko A, Zotti LA, Vonlanthen D et al (2011) Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J Am Chem Soc 133:184–187. https://doi.org/10.1021/JA107340T

    Article  CAS  PubMed  Google Scholar 

  4. Chiechi RC, Weiss EA, Dickey MD, Whitesides GM (2008) Eutectic gallium-indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew Chem Int Ed Eng 47:142–144. https://doi.org/10.1002/ANIE.200703642

    Article  CAS  Google Scholar 

  5. Temirov R, Lassise A, Anders FB, Tautz FS (2008) Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology 19. https://doi.org/10.1088/0957-4484/19/6/065401

  6. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283. https://doi.org/10.1016/0009-2614(74)85031-1

    Article  CAS  Google Scholar 

  7. Gittins DI, Bethell D, Schiffrin DJ, Nichols RJ (2000) Ananometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408:67–69. https://doi.org/10.1038/35040518

    Article  CAS  PubMed  Google Scholar 

  8. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393(6680):49–52. https://doi.org/10.1038/29954

    Article  CAS  Google Scholar 

  9. Zahedi E (2012) DFT-NEGF study of transport properties and NDR behavior in fused furan and thiophene dimmers. Phys B Condens Matter 407:4503–4511. https://doi.org/10.1016/J.PHYSB.2012.08.011

    Article  CAS  Google Scholar 

  10. Alizadeh S, Shahtahmassebi N, Pilevarshahri R, VahediFakhrabad D (2016) The effect of phenyl groups on the transport properties of tetracene molecule. Phys E: Low-Dimens Syst Nanostructures 84:466–473. https://doi.org/10.1016/J.PHYSE.2016.07.015

    Article  CAS  Google Scholar 

  11. Kaur R, Kaur S, Randhawa DKK, Sharma R (2023) Tuning the transport properties of tetracene-based single-molecule junctions with chemical or structural variation of side and anchoring groups. J Mol Model 29:1–11. https://doi.org/10.1007/S00894-023-05615-3/FIGURES/10

    Article  Google Scholar 

  12. Metzger RM (2006) Unimolecular rectifiers: present status. ChemPhys 326:176–187. https://doi.org/10.1016/J.CHEMPHYS.2006.02.026

    Article  CAS  Google Scholar 

  13. Ren Y, Chen KQ, Wan Q et al (2009) Transitions between semiconductor and metal induced by mixed deformation in carbon nanotube devices. Appl Phys Lett 94. https://doi.org/10.1063/1.3129869/336526

  14. An Y, Yang Z (2011) Abnormal electronic transport and negative differential resistance of grapheme nanoribbons with defects. Appl Phys Lett 99. https://doi.org/10.1063/1.3660228/341292

  15. Long MQ, Chen KQ, Wang L et al (2008) Negative differential resistance behaviors in porphyrin molecular junctions modulated with side groups. Appl Phys Lett 92. https://doi.org/10.1063/1.2924364/131457

  16. Pan H, Zhang YW, Shenoy VB, Gao H (2011) Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2. J Phys Chem C 115:12224–12231. https://doi.org/10.1021/JP202385Q

    Article  CAS  Google Scholar 

  17. Ulrich J, Esrail D, Pontius W et al (2006) Variability of conductance in molecular junctions. J Phys Chem B 110:2462–2466. https://doi.org/10.1021/JP056455Y

    Article  CAS  PubMed  Google Scholar 

  18. Li C, Pobelov I, Wandlowski T et al (2008) Charge transport in single Au / alkanedithiol / Au junctions: coordination geometries and conformational degrees of freedom. J Am Chem Soc 130:318–326. https://doi.org/10.1021/JA0762386

    Article  CAS  PubMed  Google Scholar 

  19. Jamali MF, Tagani MB, Soleimani HR (2017) Improvement of the thermoelectric efficiency of pyrene-based molecular junction with doping engineering. Chin Phys B 26. https://doi.org/10.1088/1674-1056/26/12/123101

  20. Basch H, Cohen R, Ratner MA (2005) Interface geometry and molecular junction conductance: geometric fluctuation and stochastic switching. Nano Lett 5:1668–1675. https://doi.org/10.1021/NL050702S

    Article  CAS  PubMed  Google Scholar 

  21. Hong W, Manrique DZ, Moreno-García P et al (2012) Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J Am ChemSoc 134:2292–2304. https://doi.org/10.1021/JA209844R

    Article  CAS  Google Scholar 

  22. Lörtscher E, Cho CJ, Mayor M et al (2011) Influence of the anchor group on charge transport through single-molecule junctions. Chemphyschem 12:1677–1682. https://doi.org/10.1002/CPHC.201000960

    Article  PubMed  Google Scholar 

  23. Koepf M, Koenigsmann C, Ding W et al (2016) Controlling the rectification properties of molecular junctions through molecule–electrode coupling. Nanoscale 8:16357–16362. https://doi.org/10.1039/C6NR04830G

    Article  CAS  PubMed  Google Scholar 

  24. Zotti LA, Kirchner T, Cuevas JC et al (2010) Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 6:1529–1535. https://doi.org/10.1002/SMLL.200902227

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Yoshida N, Imae T et al (2001) A self-assembled monolayer of an alkanoic acid-derivatized porphyrin on gold surface: a structural investigation by surface plasmon resonance, ultraviolet–visible, and infrared spectroscopies. J Colloid Interface Sci 243:382–387. https://doi.org/10.1006/JCIS.2001.7850

    Article  CAS  Google Scholar 

  26. Frei M, Aradhya SV, Koentopp M et al (2011) Mechanics and chemistry: single molecule bond rupture forces correlate with molecular backbone structure. Nano Lett 11:1518–1523. https://doi.org/10.1021/NL1042903

    Article  CAS  PubMed  Google Scholar 

  27. Van Colin D, Ratner MA (2015) Molecular rectifiers: a new design based on asymmetric anchoring moieties. Nano Lett 15(3):1577–1584. https://doi.org/10.1021/nl504091v

    Article  CAS  Google Scholar 

  28. Jamali MF, Soleimani HR, Tagani MB (2019) The maximum rectification ratio of pyrene-based molecular devices: a systematic study. J Comput Electron 18:453–464. https://doi.org/10.1007/S10825-019-01307-5/FIGURES/8

    Article  Google Scholar 

  29. Lan TN (2014) Electronic transport properties of molecular junctions based on the direct binding of aromatic ring to electrodes. ChemPhys 428:53–58. https://doi.org/10.1016/J.CHEMPHYS.2013.11.006

    Article  CAS  Google Scholar 

  30. Wang LH, Guo Y, Tian CF et al (2010) Negative differential resistance and rectifying behaviors in atomic molecular device with different anchoring groups. Phys E: Low-Dimens Syst Nanostructures 43:524–528. https://doi.org/10.1016/J.PHYSE.2010.09.007

    Article  CAS  Google Scholar 

  31. Li MJ, Xu H, Chen KQ, Long MQ (2012) Electronic transport properties in benzene-based heterostructure: effects of anchoring groups. Phys Lett A 376:1692–1697. https://doi.org/10.1016/J.PHYSLETA.2012.03.061

    Article  CAS  Google Scholar 

  32. Sikri G, Sawhney RS (2023) Computational evaluation of transport parameters and logic circuit designing of L-Lysine amino acid stringed to Au, Ag, Cu, Pt, and Pd electrodes. J Mol Model 29(4):115. https://doi.org/10.1007/s00894-023-05471-1

    Article  CAS  PubMed  Google Scholar 

  33. Nijhuis CA, Reus WF, Whitesides GM (2009) Molecular rectification in metal-SAM-metal oxide-metal junctions. J Am ChemSoc 131:17814–17827. https://doi.org/10.1021/JA9048898/SUPPL_FILE/JA9048898_SI_001.PDF

    Article  CAS  Google Scholar 

  34. Nijhuis CA, Reus WF, Barber JR et al (2010) Charge transport and rectification in arrays of SAM-based tunneling junctions. Nano Lett 10:3611–3619. https://doi.org/10.1021/NL101918M

    Article  CAS  PubMed  Google Scholar 

  35. Souto M, Yuan L, Morales DC et al (2017) Tuning the rectification ratio by changing the electronic nature (open-shell and closed-shell) in donor-acceptor self-assembled monolayers. J Am ChemSoc 139:4262–4265. https://doi.org/10.1021/JACS.6B12601

    Article  CAS  Google Scholar 

  36. Ryu T, Lansac Y, Jang YH (2017) Shuttlecock-shaped molecular rectifier: asymmetric electron transport coupled with controlled molecular motion. Nano Lett 17:4061–4066. https://doi.org/10.1021/ACS.NANOLETT.7B00596/SUPPL_FILE/NL7B00596_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  37. Anthony JE (2008) The larger acenes: versatile organic semiconductors. Angew Chem Int Ed Eng 47:452–483. https://doi.org/10.1002/ANIE.200604045

    Article  CAS  Google Scholar 

  38. Chien CT, Lin CC, Watanabe M et al (2012) Tetracene-based field-effect transistors using solution processes. J Mater Chem 22:13070–13075. https://doi.org/10.1039/C2JM31134H

    Article  CAS  Google Scholar 

  39. Brédas JL, Norton JE, Cornil J, Coropceanu V (2009) Molecular understanding of organic solar cells: the challenges. AccChemRes 42:1691–1699. https://doi.org/10.1021/AR900099H/ASSET/IMAGES/MEDIUM/AR-2009-00099H_0001.GIF

    Article  Google Scholar 

  40. Verlaak S, Cheyns D, Debucquoy M et al (2004) Numerical simulation of tetracene light-emitting transistors: a detailed balance of exciton processes. ApplPhysLett 85:2405. https://doi.org/10.1063/1.1792372

    Article  CAS  Google Scholar 

  41. James DT, Frost JM, Wade J et al (2013) Controlling microstructure of pentacene derivatives by solution processing: impact of structural anisotropy on optoelectronic properties. ACS Nano 7:7983–7991. https://doi.org/10.1021/NN403073D/SUPPL_FILE/NN403073D_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  42. Jang BB, Lee SH, Kafafi ZH (2006) Asymmetric pentacene derivatives for organic light-emitting diodes. Chem Mater 18:449–457. https://doi.org/10.1021/CM052069H/SUPPL_FILE/CM052069HSI20050914_060010.PDF

    Article  CAS  Google Scholar 

  43. Takahashi T, Takenobu T, Takeya J, Iwasa Y (2007) Ambipolar light-emitting transistors of a tetracene single crystal. Adv Funct Mater 17:1623–1628. https://doi.org/10.1002/ADFM.200700046

    Article  CAS  Google Scholar 

  44. Menard E, Podzorov V, Hur SH et al (2004) High-performance n- and p-type single-crystal organic transistors with free-space gate dielectrics. Adv Mater 16:2097–2101. https://doi.org/10.1002/ADMA.200401017

    Article  CAS  Google Scholar 

  45. Geacintov N, Pope M, Vogel F (1969) Effect of magnetic field on the fluorescence of tetracene crystals: exciton fission. Phys Rev Lett 22:593. https://doi.org/10.1103/PhysRevLett.22.593

    Article  CAS  Google Scholar 

  46. Groff RP, Avakian P, Merrifield RE (1970) Coexistence of exciton fission and fusion in tetracene crystals. Phys Rev B 1:815. https://doi.org/10.1103/PhysRevB.1.815

    Article  Google Scholar 

  47. Tomkiewicz Y, Groff RP, Avakian P (2003) Spectroscopic approach to energetics of exciton fission and fusion in tetracene crystals. J Chem Phys 54:4504. https://doi.org/10.1063/1.1674702

    Article  Google Scholar 

  48. Aryanpour K, Shukla A, Mazumdar S (2015) Theory of singlet fission in polyenes, acene crystals, and covalently linked acenedimers. J Phys Chem C 119:6966–6979. https://doi.org/10.1021/JP5124019/SUPPL_FILE/JP5124019_SI_001.PDF

    Article  Google Scholar 

  49. Piland GB, Bardeen CJ (2015) How morphology affects singlet fission in crystalline tetracene. J Phys Chem Lett 6:1841–1846. https://doi.org/10.1021/ACS.JPCLETT.5B00569/SUPPL_FILE/JZ5B00569_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  50. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  51. Akbarabadi SR, Rahimpour HR, Tagani MB (2021) Side-group-mediated thermoelectric properties of anthracene single-molecule junction with anchoring groups. Sci Rep 11:8958. https://doi.org/10.1038/s41598-021-88297-2

  52. Lawson JW, Bauschlicher CW (2006) Transport in molecular junctions with different metallic contacts. Phys Rev B 74:125401. https://doi.org/10.1103/PhysRevB.74.125401

    Article  CAS  Google Scholar 

  53. Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press. https://doi.org/10.1017/CBO9780511805776

  54. Landauer R (1989) Conductance determined by transmission: probes and quantised constriction resistance. J Phys Condens Matter 1:8099–8110. https://doi.org/10.1088/0953-8984/1/43/011

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the “Emerging Life Science Department”, “Guru Nanak Dev University, Amritsar for providing the computational facilities.

Author information

Authors and Affiliations

Authors

Contributions

R. Kaur: data collection, conceptualization, analyzing, and writing the manuscript; S. Kaur: guiding and supervising the research work; D.K.K. Randhawa: reviewing the manuscript; R.Sharma: preparing the figures and formatting the manuscript; Pawandeep Kaur: preparing the figures and formatting the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sukhdeep Kaur.

Ethics declarations

Ethical statement

We certify that we participated in the design of this work as well as the writing of the manuscript and assume public responsibility for it. We have reviewed the final version of the manuscript, and we have agreed to publish this manuscript. This manuscript has not been published elsewhere. All the authors are aware of and agree to the transmission, and no part of the manuscript has previously been published in another journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Kaur, S., Randhawa, D.K.K. et al. Mechanism of rectification and negative differential resistance in single-molecule junctions with asymmetric anchoring groups: a DFT study. J Mol Model 29, 340 (2023). https://doi.org/10.1007/s00894-023-05747-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05747-6

Keywords

Navigation