Skip to main content
Log in

Investigating the structure, bonding, and energy decomposition analysis of group 10 transition metal carbonyls with substituted terminal germanium chalcogenides [M(CO)3GeX] (M = Ni, Pd, and Pt; X = O, S, Se, and Te) complexes: insight from first-principles calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

This research focused on the theoretical investigation of transition metal carbonyls [M(CO)4] coordinated with terminal germanium chalcogenides complexes [M(CO)3GeX], where M represents Ni, Pd, and Pt and X represents O, S, Se, and Te labeled 115. While the notable complexes M(CO)4 (where M = Ni, Pd, Pt) numbered 1, 6, and 11 are of significance, substituting one of the CO ligands in 1, 6, and 11 with a GeX ligand (where X = O, S, Se, or Te) result in substituted complexes (2–5, 7–10, and 11–15). Substituting of the CO ligand slightly alters these bond angles. Specifically, the ∠CMC bond angles for [Ni] complexes range from 111.9° to 112.2°, for [Pd] complexes from 111.4° to 111.7°, and for [Pt] complexes from 112.4° to 112.8°. These findings indicate a minor deviation from the tetrahedral geometry due to the influence of the new GeX ligand. Similarly, there is a slight change in the geometry of the metal complexes, where the ∠GeMC angles for [Ni] complexes are between 106.7° and 106.9°, for [Pd] complexes between 107.2° and 107.5°, and for [Pt] complexes between 105.9° and 106.4°. Comparing among the substituted GeX complexes, those containing GeTe exhibit a higher natural bond orbital (NBO) contribution from the Ge atom compared to the M atom. Consequently, based on the above observations, it can be inferred that GeX acts as an effective sigma donor in contrast to carbonyl compounds. Results of energy decomposition analysis (EDA) for the M–CO bond in 1, 6, and 11 and for the M–GeX bond in the other [M(CO)3(GeX)] complexes where M = Ni, Pd and Pt. The percentage contribution of ΔEelstat and ΔEorb shows a relatively identical behavior for all ligands in case of each metal complexes.

Methods

Density functional theory (DFT) calculations were conducted using the B3LYP/gen/6-31G*/LanL2DZ level of theory to examine transition metal carbonyls [M(CO)4] coordinated with terminal germanium chalcogenides complexes [M(CO)3GeX], where M represents Ni, Pd, and Pt, and X represents O, S, Se, and Te labeled 1–15 utilized through the use of Gaussian 09W and GaussView 6.0.16 software packages. Post-processing computational code such as multi-wave function was employed for results analysis and visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data are contained within the manuscript.

References

  1. Ye X, Peng L, Bao X, Tan CH, Wang H (2021) Recent developments in highly efficient construction of P-stereogenic centers. Green Synth Catal 2(1):6–18

    Article  Google Scholar 

  2. Paularokiadoss F, Jeyakumar TC, Thomas R, Sekar A, Bhakiaraj D (2022) Group 13 monohalides [AX (A= B, Al, Ga and In; X= Halogens)] as alternative ligands for carbonyl in organometallics: electronic structure and bonding analysis. Comput Theor Chem 1209:113587

    Article  CAS  Google Scholar 

  3. Gong W, Chen Z, Dong J, Liu Y, Cui Y (2022) Chiral metal–organic frameworks. Chem Rev 122(9):9078–9144

    Article  CAS  PubMed  Google Scholar 

  4. Amesho KT, Lin YC, Mohan SV, Halder S, Ponnusamy VK, Jhang SR (2023) Deep eutectic solvents in the transformation of biomass into biofuels and fine chemicals: a review. Environ Chem Lett 21(1):183–230

    Article  CAS  Google Scholar 

  5. Lin X, Mo Y (2022) Partial double metal–carbon bonding model in transition metal methyl compounds. Inorg Chem 61(6):2892–2902

    Article  CAS  PubMed  Google Scholar 

  6. Dewangan S, Aslam J, Bhatia AK (2023) σ-complexes, π-complexes, and η n-C n R n carbocyclic polyenes-based organometallic compounds. Synthesis, Reactions, and Applications, Organometallic Compounds, pp 147–168

    Google Scholar 

  7. Paularokiadoss F, Sekar A, Jeyakumar TC (2020) A DFT study on structural and bonding analysis of transition-metal carbonyls with terminal haloborylene ligands [M (CO) 3 (BX)](M= Ni, Pd, and Pt; X= F, Cl, Br, and I). Comput Theor Chem 1177:112750

    Article  CAS  Google Scholar 

  8. Paularokiadoss F, Alagan S, Christopher Jeyakumar T (2021) Coordination of indium monohalide with group-10 metal carbonyls [TM (CO) 3 (InX)]: a DFT study. Chem Pap 75:311–324

    Article  Google Scholar 

  9. Dennington RDII, Keith TA, Millam JM (2016) GaussView, version 6.0. 16. Semichem Inc Shawnee Mission KS

  10. Oueslati Y, Kansız S, Dege N, de la Torre Paredes C, Llopis-Lorente A, Martínez-Máñez R, Sta WS (2022) Growth, crystal structure, Hirshfeld surface analysis, DFT studies, physicochemical characterization, and cytotoxicity assays of novel organic triphosphate. J Mol Model 28(3):65

    Article  CAS  PubMed  Google Scholar 

  11. Frisch ME, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR.,...& Fox DJ (2016) Gaussian 16

  12. Baharlou E (2017) Generative agent-based architectural design computation: behavioral strategies for integrating material, fabrication and construction characteristics in design processes. Institute for Computational Design and Construction, Stuttgart

    Google Scholar 

  13. Westermayr J, Marquetand P (2020) Machine learning for electronically excited states of molecules. Chem Rev 121(16):9873–9926

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vetri P, Paularokiadoss F, Celaya CA, Novena LM, Thomas JM, Jeyakumar TC (2023) A DFT study on structural and bonding analysis of transition-metal carbonyls [M (CO) 4] with terminal silicon chalcogenides complexes [M (CO) 3SiX](M= Ni, Pd, and Pt; X= O, S, Se, and Te). Comput Theor Chem 1226:114214

    Article  CAS  Google Scholar 

  15. Neto MCL, Carvalho FE, Souza GM, Silveira JA (2021) Understanding photosynthesis in a spatial–temporal multiscale: the need for a systemic view. Theor Exp Plant Physiol 33:113–124

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu C, Chen FY, Tian HR, Ai J, Yang W, Pan QJ, Sun ZM (2017) Interpenetrated uranyl–organic frameworks with bor and pts topology: structure, spectroscopy, and computation. Inorg Chem 56(22):14147–14156

    Article  CAS  PubMed  Google Scholar 

  17. Jing Y, Ye Z, Su J, Feng Y, Qu LB, Liu Y, Ke Z (2020) The potential of d 6 non-noble metal NHC catalysts for carbon dioxide hydrogenation: group and row effects. Catal Sci Technol 10(16):5443–5447

    Article  CAS  Google Scholar 

  18. Musil F, Grisafi A, Bartók AP, Ortner C, Csányi G, Ceriotti M (2021) Physics-inspired structural representations for molecules and materials. Chem Rev 121(16):9759–9815

    Article  CAS  PubMed  Google Scholar 

  19. Sekar A, Paularokiadoss F, Immanuel S, Christopher Jeyakumar T (2021) Chemistry of group-10 metals monohaloalumylene complexes [TM (CO) 3 AlX]: a DFT study. Theoret Chem Acc 140:1–14

    Article  Google Scholar 

  20. Mahadevi AS, Sastry GN (2016) Cooperativity in noncovalent interactions. Chem Rev 116(5):2775–2825

    Article  CAS  PubMed  Google Scholar 

  21. Keith JA, Vassilev-Galindo V, Cheng B, Chmiela S, Gastegger M, Müller KR, Tkatchenko A (2021) Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem Rev 121(16):9816–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Callister WD Jr, Rethwisch DG (2020) Fundamentals of materials science and engineering: an integrated approach. John Wiley & Sons

    Google Scholar 

  23. Callister WD Jr, Rethwisch DG (2020) Callister’s materials science and engineering. John Wiley & Sons

    Google Scholar 

  24. Emori W, Louis H, Adalikwu SA, Timothy RA, Cheng CR, Gber TE.,...& Adeyinka AS (2022) Molecular modeling of the spectroscopic, structural, and bioactive potential of tetrahydropalmatine: insight from experimental and theoretical approach. Polycyclic Aromatic Compounds, 1–18

  25. Ye Z, Xie S, Cao Z, Wang L, Xu D, Zhang H.,...& Ye M (2021) High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Materials, 37, 378–386.

  26. Bulat FA, Murray JS, Politzer P (2021) Identifying the most energetic electrons in a molecule: the highest occupied molecular orbital and the average local ionization energy. Comput Theor Chem 1199:113192

    Article  CAS  Google Scholar 

  27. Miar M, Shiroudi A, Pourshamsian K, Oliaey AR, Hatamjafari F (2021) Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo [d] thiazole-2 (3 H)-imine and its para-substituted derivatives: solvent and substituent effects. J Chem Res 45(1–2):147–158

    Article  CAS  Google Scholar 

  28. Louis H, Eno EA, Timothy RA, Agwamba EC, Unimuke TO, Bukie PT.,...& Offiong OE (2022) Understanding the influence of alkyl-chains and hetero-atom (C, S, O) doped electron-acceptor fullerene-free benzothiazole for application in organic solar cell: first principle perception. Optical and Quantum Electronics, 54(11), 681.

  29. Paularokiadoss F, Sandosh TA, Sekar A, Jeyakumar TC (2021) Theoretical studies of group 10 metal gallylene complexes [TM (CO) 3 (GaX)]. Comput Theor Chem 1197:113139

    Article  CAS  Google Scholar 

  30. Kamel M, Mohammadifard K (2021) Thermodynamic and reactivity descriptors Studies on the interaction of Flutamide anticancer drug with nucleobases: a computational view. Chem Rev Lett 4(1):54–65

    CAS  Google Scholar 

  31. Selvam LA, Prathap S, Muthu S, Balamurugan N, Raj MVA (2022) Density functional theory analysis of an organic compound 2-amino-5-chloro-3-nitropyridine. Mater Today: Proc 50:2760–2763

    Google Scholar 

  32. Dhoble SJ, Kadam AR, Darshan GP, Sharma SC, Nagabhushuna H (2023) Paradigms of titanate centered energy materials. CRC Press

    Book  Google Scholar 

  33. Genoni A, Bučinský L, Claiser N, Contreras‐García J, Dittrich B, Dominiak PM.,...& Grabowsky S (2018) Quantum crystallography: current developments and future perspectives. Chemistry–A European Journal, 24(43), 10881–10905.

  34. Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S.,...& Robinson JA (2015) Recent advances in two-dimensional materials beyond graphene. ACS nano, 9(12), 11509–11539.

Download references

Acknowledgements

The authors gladly acknowledged the effort of computational Chemistry developers especially those with free open-source codes.

Author information

Authors and Affiliations

Authors

Contributions

Thayalaraj C. Jeyakumar: investigation, methodology, and analysis. Rawlings A. Timothy and R. Rameshbabu Priyadarshan: investigation, analysis, visualization, and manuscript draft. Rajendran Rajaram and Jisha Mary Thomas: investigation, analysis, writing, and editing. Hitler Louis: conceptualization, resources, and software.

Corresponding authors

Correspondence to Thayalaraj Christopher Jeyakumar or Hitler Louis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadharsan, R.R., Timothy, R.A., Thomas, J.M. et al. Investigating the structure, bonding, and energy decomposition analysis of group 10 transition metal carbonyls with substituted terminal germanium chalcogenides [M(CO)3GeX] (M = Ni, Pd, and Pt; X = O, S, Se, and Te) complexes: insight from first-principles calculations. J Mol Model 29, 344 (2023). https://doi.org/10.1007/s00894-023-05745-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05745-8

Keywords

Navigation