Skip to main content
Log in

Experimental and theoretical study of the cytosine tautomerism through excited states

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract 

Context

The irradiation of water solution of cytosine with UV light (λmax = 254 nm) shows oxo-hydroxy tautomerism with a rate constant of 6.297 × 10−3 min−1. The order of the reaction implies a tautomeric conversion. After removing the UV light source, we observed a dark reaction with a rate constant of 1.473 × 10−3 min−1 which leads to a restoration of the initial tautomer as before the irradiation. The mechanism of oxo-hydroxy tautomerism of cytosine in water solution was studied in the excited state. It was found that the transformations occur along the 1πσ* excited-state reaction paths which link the Franck–Condon geometries of the tautomers and the conical intersections S0/S1 connected with the H-detachment processes of the corresponding bonds. Furthermore, we established that the conical intersections S0/S1 are also mutually accessible along the 1πσ* excited-state reaction paths.

Methods

The ground-state equilibrium geometries were optimized at the B3LYP/aug-cc-pVDZ level of theory in water environment according to PCM as well as at the CC2/aug-cc-pVDZ level in the gas phase. The TD B3LYP and CC2 methods were applied for the study of the excited states. The tautomerization mechanisms were studied with the use of the linear interpolation in internal coordinates approach using the optimized geometries of tautomers minima and conical intersections S0/S1 at the CASSCF(6,6)/6-31G* level. All calculations were performed with the GAUSSIAN 16 commercial software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References 

  1. Nelson DL, Cox MM (2008) In: Freeman WH (ed) Lehninger principles of biochemistry (14th ed), New York

  2. Jeffrey GA, Kinoshita Y (1963) The crystal structure of cytosine monohydrate. Acta Cryst 16:20–28. https://doi.org/10.1107/S0365110X63000049

    Article  CAS  Google Scholar 

  3. Kossel A, Steudel H (1903) Weitere Untersuchungen über das Cytosine. Physiol Chem 38:49–59. https://doi.org/10.1515/bchm2.1903.38.1-2.49

    Article  CAS  Google Scholar 

  4. Piuzzi F, Mons M, Dimicoli I, Tardivel B, Zhao Q (2001) Ultraviolet spectroscopy and tautomerism of the DNA base guanine and its hydrate formed in a supersonic jet. Chem Phys 270:205–214. https://doi.org/10.1016/S0301-0104(01)00393-7

    Article  CAS  Google Scholar 

  5. Nir E, Grace L, Bauer B, deVries MS (1999) REMPI spectroscopy of jet-cooled guanine. J Am Chem Soc 121:4896–4897. https://doi.org/10.1021/ja984088g

    Article  CAS  Google Scholar 

  6. Reuther AR, Iglev H, Laenen R, Laubereau A (2000) Femtosecond photo-ionization of nucleic acid bases: electronic lifetimes and electron yields. Chem Phys Lett 325:360–368. https://doi.org/10.1016/S0009-2614(00)00699-0

    Article  CAS  Google Scholar 

  7. Crespo-Hernandez CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104:1977–2020. https://doi.org/10.1021/cr0206770

    Article  CAS  PubMed  Google Scholar 

  8. Kang H, Lee KT, Jung B, Kao YJ, Kim SK (2002) Intrinsic lifetimes of the excited state of DNA and RNA bases. J Am Chem Soc 124:12958–12959. https://doi.org/10.1021/ja027627x

    Article  CAS  PubMed  Google Scholar 

  9. Kang H, Jung B, Kim SK (2003) Mechanism for ultrafast internal conversion of adenine. J Chem Phys 118:6717. https://doi.org/10.1063/1.1566438

    Article  CAS  Google Scholar 

  10. Mons M, Dimicoli I, Piuzzi F, Tardivel B, Elhanine M (2002) Tautomerism of the DNA base guanine and its methylated derivatives as studied by gas-phase infrared and ultraviolet spectroscopy. J Phys Chem A 106:5088–5094. https://doi.org/10.1021/jp0139742

    Article  CAS  Google Scholar 

  11. Canuel C, Mons M, Piuzzi F, Tardivel B, Dimicoli L, Elhanine M (2005) Excited states dynamics of DNA and RNA bases: characterization of a stepwise deactivation pathway in the gas phase. J Chem Phys 122:074316. https://doi.org/10.1063/1.1850469

    Article  CAS  PubMed  Google Scholar 

  12. Kuimova MK, Dyer J, George MW, Grills DC, Kelly JM, Matousek P, Parker AW, Sun XZ, Towrie M, Whelan AM (2005) Monitoring the effect of ultrafast deactivation of the electronic excited states of DNA bases and polynucleotides following 267 nm laser excitation using picosecond time-resolved infrared spectroscopy. Chem Commun 1182–1184. https://doi.org/10.1039/B414450C

  13. Samoylova E, Lippert H, Ullrich S, Hertel IV, Radloff W, Schultz T (2004) Dynamics of photoinduced processes in adenine and thymine base pairs. J Am Chem Soc 127:1782–1786. https://doi.org/10.1021/ja044369q

    Article  CAS  Google Scholar 

  14. Callis PR (1983) Electronic states and luminescence of nucleic acid systems. Annu Rev Phys Chem 34:329–357. https://doi.org/10.1146/annurev.pc.34.100183.001553

    Article  CAS  Google Scholar 

  15. Daniels MH, Hauswirth WW (1971) Fluorescence of the purine and pyrimidine bases of the nucleic acids in neutral aqueous solution at 300°K. Science 171:675–677 (https://www.jstor.org/stable/1731465)

    Article  CAS  PubMed  Google Scholar 

  16. Hauswirth W, Daniels M (1971) Radiationless transition rates of thymine and uracil in neutral aqueous solution at 300°K. Chem Phys Lett 10:140–142. https://doi.org/10.1016/0009-2614(71)80444-X

    Article  CAS  Google Scholar 

  17. Morita H, Nagakura S (1968) The electronic absorption spectra and the electronic structures of cytosine, isocytosine, and their anions and cations. Theoret Chim Acta 11:279–295. https://doi.org/10.1007/BF00568786

    Article  CAS  Google Scholar 

  18. Kwiatkowski JS, Pullman B (1975) Taulomerism and electronic structure of biological pyrimidines. Adv Heterocycl Chem 18:199–335. https://doi.org/10.1016/S0065-2725(08)60131-2

    Article  CAS  Google Scholar 

  19. Del Bene JE (1983) Molecular orbital study of the protonation of DNA bases. J Phys Chem 87:367–371. https://doi.org/10.1021/j100225a040

    Article  Google Scholar 

  20. Lowe PR, Schwalbe CH, Williams GJB (1987) Structure of 6-methylisocytosine. Acta Cryst C 43:330–333. https://doi.org/10.1107/S0108270187095945

    Article  Google Scholar 

  21. Bazsó G, Tarczay G, Fogarasi G, Szalay PG (2011) Tautomers of cytosine and their excited electronic states: a matrix isolation spectroscopic and quantum chemical study. Phys Chem Chem Phys 13:6799–6807. https://doi.org/10.1039/C0CP02354J

    Article  PubMed  Google Scholar 

  22. Brown DJ, Teitei T (1965) Simple pyrimidines. VIII. The fine structure of isocytosine, thiocytosine, and some isomers. Aust J Chem 18:559–568. https://doi.org/10.1071/CH9650559

    Article  CAS  Google Scholar 

  23. Kobayashi R (1998) A CCSD(T) Study of the relative stabilities of cytosine tautomers. J Phys Chem A 102:10813–10817. https://doi.org/10.1021/jp9829546

    Article  CAS  Google Scholar 

  24. Brown RD, Gordfrey PD, McNaughton D, Pierlot AP (1987) Tautomers of cytosine by microwave spectroscopy. J Am Chem Soc 111:2308–2310. https://doi.org/10.1021/ja00188a058

    Article  Google Scholar 

  25. Shukla MK, Leszczynski J (2002) Interaction of water molecules with cytosine tautomers: an excited-state quantum chemical investigation. J Phys Chem A 106:11338–11346. https://doi.org/10.1021/jp021317j

    Article  CAS  Google Scholar 

  26. Li Q, Blancafort L (2013) Photochemistry and photophysics of the amino and imino tautomers of 1-methylcytosine: tautomerisation as a side product of the radiationless decay. Photochem Photobiol Sci 12:1401–1408. https://doi.org/10.1039/c0xx00000x

    Article  CAS  PubMed  Google Scholar 

  27. Topal MD, Fresco JR (1976) Complementary base pairing and the origin of substitution mutations. Nature (London) 263:285–289. https://doi.org/10.1038/263285a0

    Article  CAS  PubMed  Google Scholar 

  28. Podolyan Y, Gorb L, Leszczynski J (2003) Ab initio study of the prototropic tautomerism of cytosine and guanine and their contribution to spontaneous point mutations. Int J Mol Sci 4:410–421. https://doi.org/10.3390/i4070410

    Article  CAS  Google Scholar 

  29. Kosma K, Schröter Ch, Samoylova E, Hertel IV, Schultz T (2009) Excited-state dynamics of cytosine tautomers. J Am Chem Soc 131:16939–16943. https://doi.org/10.1021/ja907355a

    Article  CAS  PubMed  Google Scholar 

  30. Lapinski L, Reva I, Nowak MJ, Fausto R (2011) Five isomers of monomeric cytosine and their interconversions induced by tunable UV laser light. Phys Chem Chem Phys 13:9676–9684. https://doi.org/10.1039/C0CP02812F

    Article  CAS  PubMed  Google Scholar 

  31. Plutzer C, Nir E, deVries MS, Kleinermanns K (2001) IR–UV double-resonance spectroscopy of the nucleobase adenine. Phys Chem Chem Phys 3:5466–5469. https://doi.org/10.1039/B107997B

    Article  Google Scholar 

  32. Zaloudek F, Novros JS, Clark LB (1985) The electronic spectrum of cytosine. J Am Chem Soc 107:7344–7351. https://doi.org/10.1021/ja00311a022

    Article  CAS  Google Scholar 

  33. Johnson WC Jr, Vipond PM, Girod JC (1971) Tautomerism in cytidine. Biopolymers 10:923–933. https://doi.org/10.1002/bip.360100514

    Article  CAS  PubMed  Google Scholar 

  34. Merchan M, Gonzalez-Luque R, Climent T, Serrano-Andres L, Rodriguez E, Reguero M, Pelaez D (2006) Unified model for the ultrafast decay of pyrimidine nucleobases. J Phys Chem B 110:26471–26476. https://doi.org/10.1021/jp066874a

    Article  CAS  PubMed  Google Scholar 

  35. Perun S, Sobolewski A, Domcke W (2006) Conical intersections in thymine. J Phys Chem A 110:13238–13244. https://doi.org/10.1021/jp0633897

    Article  CAS  PubMed  Google Scholar 

  36. Sobolewski AL, Domcke W (2006) The chemical physics of the photostability of life. Europhys News 37:20–23. https://doi.org/10.1051/epn:2006405

    Article  CAS  Google Scholar 

  37. Epifanovsky E, Kowalski K, Fan P-D, Valiev M, Matsika S, Krylov AI (2008) On the electronically excited states of uracil. J Phys Chem A 112:9983–9992. https://doi.org/10.1021/jp803758q

    Article  CAS  PubMed  Google Scholar 

  38. Kistler KA, Matsika S (2008) Three-state conical intersections in cytosine and pyrimidinone bases. J Chem Phys 128:215102. https://doi.org/10.1063/1.2932102

    Article  CAS  PubMed  Google Scholar 

  39. Kistler KA, Matsika S (2007) Radiationless decay mechanism of cytosine: an ab initio study with comparisons to the fluorescent analogue 5-methyl-2-pyrimidinone. J Phys Chem A 111:2650–2661. https://doi.org/10.1021/jp0663661

    Article  CAS  PubMed  Google Scholar 

  40. Mai S, Marquetand P, Richter M, Gonzalez-Vazquez J, Gonzalez L (2013) Singlet and triplet excited-state dynamics study of the keto and enol tautomers of cytosine. ChemPhysChem 14:2920–2931. https://doi.org/10.1002/cphc.201300370

    Article  CAS  PubMed  Google Scholar 

  41. Martínez-Fernandez L, Pepino AJ, Segarra-Martí J, Jovaisaitė J, Vaya I, Nenov A, Markovitsi D, Gustavsson T, Banyasz A, Garavelli M, Improta R, (2017) Photophysics of deoxycytidine and 5-methyldeoxycytidine in solution: a comprehensive picture by quantum mechanical calculations and femtosecond fluorescence spectroscopy. J Am Chem Soc 139:7780–7791. https://doi.org/10.1021/jacs.7b01145

    Article  CAS  PubMed  Google Scholar 

  42. Blancafort L, Migani A (2007) Water effect on the excited-state decay paths of singlet excited cytosine. J Photochem Photobiol A 190:283–289. https://doi.org/10.1016/j.jphotochem.2007.04.015

    Article  CAS  Google Scholar 

  43. Sobolewski AL (1993) The mechanism of excited-state hydrogen transfer in 2-hydroxypyridine. Chem Phys Lett 211:293–299. https://doi.org/10.1016/0009-2614(93)87062-8

    Article  CAS  Google Scholar 

  44. Chmura B, Rode M, Sobolewski AL, Lapinski L, Nowak M (2008) A computational study on the mechanism of intramolecular oxo−hydroxy phototautomerism driven by repulsive πσ* State. J Phys Chem A 112:13655–13661. https://doi.org/10.1021/jp8070986

    Article  CAS  PubMed  Google Scholar 

  45. Bakalska RI, Delchev VB (2012) Comparative study of the relaxation mechanisms of the excited states of cytosine and isocytosine. J Mol Mod 18:5133–5146. https://doi.org/10.1007/s00894-012-1506-0

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomer, Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, VN Staroverov, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2019) Gaussian, Inc., Wallingford CT, 2019

  47. Turbomole rev. V7–6 19 Oct 2021 a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007. https://www.turbomole.org

  48. Hättig C (2005) Structure optimizations for excited states with correlated second-order methods: CC2, CIS(D1), and ADC(2). Adv Quant Chem 50:37–60. https://doi.org/10.1016/S0065-3276(05)50003-0

    Article  CAS  Google Scholar 

  49. Chemcraft - graphical software for visualization of quantum chemistry computations. Version 1.8, build 536A. https://www.chemcraftprog.com

  50. Delchev VB, Sobolewski AL, Domcke W (2010) Comparison of the non-radiative decay mechanisms of 4-pyrimidinone and uracil: an ab initio study. Phys Chem Chem Phys 12:5007–5015. https://doi.org/10.1039/b922505f

    Article  CAS  PubMed  Google Scholar 

  51. Kancheva P, Tuna D, Delchev VB (2016) Comparative study of radiationless deactivation mechanisms in cytosine and 2,4-diaminopyrimidine. J Photochem Photobiol A 321:266–274. https://doi.org/10.1016/j.jphotochem.2016.02.011

    Article  CAS  Google Scholar 

  52. Yankov EP, Bakalska RI, Horkel E, Svatunek D, Delchev VB (2018) Experimental and theoretical study of the excited-state tautomerism of 6-azauracil in water surroundings. Chem Phys 515:663–671. https://doi.org/10.1016/j.chemphys.2018.07.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Bulgarian National Science Fund for the financial support of the research in the frames of the project No КP-06-N59/7. The authors gratefully acknowledge also (i) the Department of Scientific Research at the University of Plovdiv for administrating the project and (ii) the provided access to the e-infrastructure of the NCHDC â part of the Bulgarian National Roadmap on RIs, with the financial support by the Grant No D01-168/28.07.2022.

Funding

This work was supported by the Bulgarian National Science Fund, project No КP-06-N59/7.

Bulgarian National Science Fund,КP-06-N59/7,КP-06-N59/7,КP-06-N59/7,КP-06-N59/7,КP-06-N59/7,КP-06-N59/7

Author information

Authors and Affiliations

Authors

Contributions

Vassil Delchev and Ernst Horkel gave the idea of the research. Tsvertina Cherneva, Vassil Delchev, Ivan Shterev, and Ernst Horkel performed the calculations and simulations. Rumyana Bakalska, Mina Todorova, and Tsvetina Cherneva performed the experiments with the irradiation and analysis of the experimental spectra. All authors read and approved the manuscript.

Corresponding author

Correspondence to Vassil B. Delchev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The authors declare that no human and animal experiments were conducted in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 610 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherneva, T.D., Todorova, M.M., Bakalska, R.I. et al. Experimental and theoretical study of the cytosine tautomerism through excited states. J Mol Model 29, 303 (2023). https://doi.org/10.1007/s00894-023-05707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05707-0

Keywords

Navigation