Skip to main content
Log in

Electronic, optical and spectroscopic properties of N-dialkyl-imidazolium hexafluorophosphate (CNMIM.PF6) ionic liquid crystal molecules investigated by computational methods

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this present work, we calculate the electronic, spectroscopic and nonlinear optical properties (NLO) of N-dialkyl-imidazolium hexafluorophosphate (CNMIM.PF6, where N = 10, 12, 14, 16, 18, 20) ionic liquid crystal molecules under the effect of alkyl chain length variation in cation moiety [CNMIM]+ with fixed anion [PF6].

Context

The majority of research on ionic liquid crystal to date has been focused on experiments, while theoretical studies on the optical properties of ionic liquid crystal have been extremely rare. Nonlinear phenomena in optical devices have attracted many researchers. Therefore, results of NLO properties may favor facile synthesis and fabrication of novel-type of materials as well as optoelectronic devices. Spectroscopic studies elucidate further insight into ionic liquid crystal behavior. The results demonstrate that variations in alkyl chain length have an impact on the conformers’ electrical, spectroscopic, and NLO properties as well as their stability. The stability of ionic liquid crystal molecules increases with increase in the alkyl chain length and the energy band gap range is 6.64–6.29 eV. Understanding ionic liquid crystal’s physical behavior requires an understanding of their dipole moments and NLO features, which are covered in this article. The results of NLO characteristics for all ionic liquid crystal molecules show that their first-order hyperpolarizabilities are higher than the reference molecule (urea).

Methods

The electronic (molecular energy band gap, electrostatic potential map, as well as HOMO-LUMO orbitals) and spectroscopic (IR-RAMAN, UV) properties were evaluated with the help of theoretical model at B3LYP/6-31G(d) while the NLO study has been performed using B3LYP and M06-2X with different basis sets 6-31G(d) and 6-311++G(d,p), as implemented in Gaussian09 software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Demus D, Goodby J, Gray GW, Spiess HW, Vill V (1999) Physical properties of liquid crystals, vol 4. Wiley-Vch, Weinheim, New York, pp 1–490

    Google Scholar 

  2. Tschierske C (2013) Development of structural complexity by liquid- crystal self-assembly. Angew Chem Int Ed 52:8828–8878

    CAS  Google Scholar 

  3. Kato T, Mizoshita N, Kishimoto K (2006) Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed 45:38–68

    CAS  Google Scholar 

  4. Binnemans K (2005) Ionic liquid crystals. Chem Rev 105:4148–4204

    CAS  PubMed  Google Scholar 

  5. Salanne M (2017) Ionic liquids for supercapacitor applications. Top Curr Chem 375:1–25

    CAS  Google Scholar 

  6. Shvedene NV, Chernyshov DV, Pletnev IV (2008) Ionic liquids in electrochemical sensors. Russ J Gen Chem 78:2507–2520

    CAS  Google Scholar 

  7. Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD (1998) Room-temperature ionic liquids as novel media for “clean” liquid-liquid extraction. Chem Commun 16:1765–1766

    Google Scholar 

  8. Micaêlo NM, Soares CM (2008) Protein structure and dynamics in ionic liquids. Insights from molecular dynamics. J Phys Chem B 112:2566–2572

    PubMed  Google Scholar 

  9. Bhowmik PK, Chang A, Kim J, Dizon EJ, Principe RCG, Han H (2019) Thermotropic liquid-crystalline properties of viologens containing 4-n-alkylbenzenesulfonates. Crystals 9:77

    Google Scholar 

  10. Xue L, Tamas G, Matthews RP, Stone AJ, Hunt PA, Quitevis EL, Lynden-Bell RM (2015) An OHD-RIKES and simulation study comparing a benzylmethylimidazolium ionic liquid with an equimolar mixture of dimethylimidazolium and benzene. Phys Chem Chem Phys 15:9973–9983

    Google Scholar 

  11. Yoshio M, Mukai T, Ohno H, Kato T (2004) One-dimensional ion transport in self-organized columnar ionic liquids. J Am Chem Soc 126:994–995

    CAS  PubMed  Google Scholar 

  12. Kodikara MS, Stranger R, Humphrey MG (2018) Computational studies of the nonlinear optical properties of organometallic complexes. Coord Chem Rev 375:389–409

    CAS  Google Scholar 

  13. Bardak F, Bardak C, Karaca C, Kose E, Bilgili S, Atac A (2021) Anionic dependency of electronic and nonlinear optical properties of ionic liquids. J Mol Liq 345:117030

    Google Scholar 

  14. Marino G, Segovia P, Krasavin AV, Ginzburg P, Olivier N, Wurtz GA, Zayats AV (2018) Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab. Laser Phot Rev 12:1700189

    Google Scholar 

  15. Rullière C (2003) Femtosecond laser pulses: principles and experiments2nd edn. Springer, France, pp 1–438

    Google Scholar 

  16. Gordon CM, Holbrey JD, Kennedya AR, Seddonb KR (1998) Ionic liquid crystals: hexafluorophosphate salts. J Mater Chem 8:2627–2636

    CAS  Google Scholar 

  17. Lyashchova A, Fedorenko D, Garbovskiy Y, Klimusheva G, Mirnaya T, Asaula V (2013) Strong thermal optical nonlinearity caused by CdSe nanoparticles synthesised in smectic ionic liquid crystal. Liq Cryst 40(10):1377–1382

    CAS  Google Scholar 

  18. Stappert K, Unal D, Mallicka B, Mudring AV (2014) New triazolium based ionic liquid crystals. J Mater Chem C 2:7976–7986

    CAS  Google Scholar 

  19. Sasi R, Sarojamb S, Devakia SJ (2016) High performing Bio-based ionic liquid crystal electrolytes for supercapacitors ACS. Sustain Chem Eng 4:3535–3543

    CAS  Google Scholar 

  20. Hadji D, Haddad B, Brandán SA, Panja SK, Paolone A, Drai M, Villemin D, Bresson S, Rahmouni M (2020) Synthesis, NMR, Raman, thermal and nonlinear optical properties of dicationic ionic liquids from experimental and theoretical studies. J Mol Struct 1220:128713

    CAS  Google Scholar 

  21. Ferreira VC, Zanchet L, Monteiro WF, da Trindade LG, de Souza MO, Correia RRB (2021) Theoretical and experimental comparative study of nonlinear properties of imidazolium cation based ionic liquids. J Mol Liq 328:115391

    CAS  Google Scholar 

  22. Xia X, Peng J, Wan Q, Wang X, Fan Z, Zhao J, Li F (2021) Functionalized ionic liquid-crystal additive for perovskite solar cells with high efficiency and excellent moisture stability. ACS Appl Mater Interfaces 13:17677–17689

    CAS  PubMed  Google Scholar 

  23. Fan F, Zhang Y, Hao M, Xin F, Zhou Z, Zhou Y (2022) Harnessing chemical functions of ionic liquids for perovskite solar cells. J Energy Chem 68:797–810

    CAS  Google Scholar 

  24. Rudenko V, Tolochko A, Zhulai D, Bugaychuk S, Klimusheva G, Yaremchuk G, Mirnaya T, Garbovskiy Y (2023) Intensity-dependent optical nonlinearities of composite materials made of ionic liquid crystal glass and bimetallic nanoparticles. Liq Cryst 50(1):174–180

    CAS  Google Scholar 

  25. Saleh BEA, Teich MC (2019) Fundamentals of photonics3rd edn. Wiley

    Google Scholar 

  26. Rullière C (2003) Femtosecond laser pulses: principles and experiments2nd edn. Springer

    Google Scholar 

  27. Lubatschowski H, Heisterkamp A, Will F, Serbin J, Bauer T, Fallnich C, Welling H, Mueller W, Schwab B, Singh AI, Ertmer W (2002) Ultrafast laser pulses for medical applications. Bellingham, Wash. : Proceedings of SPIE-The International Society for Optical Engineering, pp 38–49

    Google Scholar 

  28. Suresh S, Arivuoli D (1994) Nanomaterials for nonlinear optical (NLO) applications: a review. Rev Adv Mater Sci 116:243–253

    Google Scholar 

  29. Ponraj JS, Zai-Quan X, Dhanabalan SC, Mu H, Wang Y, Yuan J, Li P, Thakur S, Ashrafi M, Mccoubrey K, Zhang Y, Li S, Zhang H, Bao Q (2016) Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotech 27:1–34

    Google Scholar 

  30. Marino G, Segovia P, Krasavin AV, Ginzburg P, Olivier N, Wurtz GA, Zayats AV (2018) Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab. Laser Phot Rev 12:1700189

    Google Scholar 

  31. Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in organic molecules and polymers. Wiley, New York

    Google Scholar 

  32. Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM (1994) Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem Rev 94:243–278

    CAS  Google Scholar 

  33. Sasaki T, Mori Y, Yoshimura M (2000) Widely tunable and high-average-power fourth-harmonic generation of a Ti:sapphire laser with a KBe2BO3F2KBe2BO3F2 prism-coupled device. Mater SciEng 34:1342–1344

    Google Scholar 

  34. Boyd RW (2007) Third-order nonlinear optical properties of thin sputtered gold films. Nonlin Opt 275:217–222

    Google Scholar 

  35. Yang Y, Jiang X, Lin Z (2017) Borate-based ultraviolet and deep-ultraviolet nonlinear optical crystals. Cryst 7:95

    Google Scholar 

  36. Wu H, Yu H, Pan S (2017) Deep-ultraviolet nonlinear-optical material K3Sr3Li2Al4B6O20F: addressing the structural instability problem in KBe2BO3F2. Inorg Chem 56:8755–8758

    CAS  PubMed  Google Scholar 

  37. Guo S, Jiang X, Liu L (2016) Artificial water-soluble systems inspired by [FeFe]-hydrogenases for electro- and photocatalytic hydrogen production. Chem Mater 28:4305–4327

    Google Scholar 

  38. Guo S, Liang F, Liu L (2017) LiSr3Be3B3O9F4: a new ultraviolet nonlinear optical crystal for fourth-harmonic generation of Nd:YAG lasers. New J Chem 37

  39. Sheffield MF (2010) Optical properties of solids, vol 372. Clarendon, Oxford

    Google Scholar 

  40. Suresh S, Ramanand A, Jayaraman D, Mani P (2012) Review on theoretical aspect of nonlinear optics. Rev Adv Mater Sci 30:175–183

    CAS  Google Scholar 

  41. Del Sesto RE, Dudis DS, Ghebremichael F, Heimer NE, Low TKC, Wilkes JS, Yeates AT (2005) Nonlinear optical ionic liquids. ACS Symp Ser 902:144–158

    Google Scholar 

  42. Salikolimi K,  Sudhakar AA, Ishida Y, (2020) Functional ionic liquid crystals. Langmuir 36(40):11702-11731

    CAS  PubMed  Google Scholar 

  43. Tshemese Z, Masikane SC, Mlowe S, Revaprasadu N, (2018) Progress in green solvents for the stabilisation of nanomaterials imidazolium based ionic liquids. Recent Adv Ionic Liq 69

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucc BI, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda Hasegawa RJ, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery, JA  Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Camm RI, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Gaussian DJ Fox, Inc, Wallingford CT, Gaussian (2009) 09 revision A.02

    Google Scholar 

  45. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  46. Andersson MP, Uvdal P (2005) New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+ G (d, p). Chem A Eur J 109(12):2937–2941

    CAS  Google Scholar 

  47. Karakas A, Ceylan Y, Karakaya M, Taser M, Terlemez BB, Eren N, El Kouari Y, Lougdali M, Arof AK, Sahraoui B (2019) Theoretical diagnostics of second and third-order hyperpolarizabilities of several acid derivatives. Open Chem 17:151–156

    CAS  Google Scholar 

  48. Sharma A, Srishti VP, Pramanik M (2019) Photoacoustic imaging depthcomparison at 532-, 800-, and 1064-nm wavelengths: Monte Carlo simulation and experimental validation. J Biomed Opt 12:121904–121904

    Google Scholar 

  49. Matsuura Y (2013) Optical fibers for medical applications. Lasers Med. Appl. Diagnostics, Ther. Surg.1st edn. Elsevier Ltd, pp 110–124

    Google Scholar 

  50. Ganeev RA, Ryasnyanskiĭ AI, Kuroda H (2006) Nonlinear optical characteristics of carbon disulfide. Opt Spectrosc 100:108–118

    CAS  Google Scholar 

  51. Dibrov SM, Kochi JK (2006) Crystallographic view of fluidic structures for room-temperature ionic liquids: 1-butyl-3-methylimidazolium hexafluorophosphate. Acta Crystallogr C Struct Chem Commun 62(1):o19–o21

    Google Scholar 

  52. Saielli G (2019) Special issue editorial: ionic liquid crystals. J Cryst 9:12–110

    Google Scholar 

  53. Williams L (2021) Molecular interactions and the behaviors of biological macromolecules. Chem & Biochem

  54. Hunt PA (2017) Quantum chemical modeling of hydrogen bonding in ionic liquids. Top Curr Chem 59:225–246

    Google Scholar 

  55. Farber C, Li J, Hager E, Chemelewski R, Mullet J, Rogachev AY, Kurouski D (2019) Complementarity of Raman and infrared spectroscopy for structural characterization of plant epicuticular waxes. ACS Omega 4:3700–3707

    CAS  Google Scholar 

  56. Boumediene M, Haddad B, Paolone A, Assenine MA, Villemin D (2020) Synthesis, conformational studies, vibrational spectra and thermal properties, of new substituted dicationic based on biphenylenedimethylene linked bis-1-methylimidazolium ionic liquids. J Mol Struct 1220:128731

    CAS  Google Scholar 

  57. Berg RW, Deetlefs M, Seddon KR, Shim I, Thompson JM (2005) Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids. J Phys Chem B 109:19018–19025

    CAS  PubMed  Google Scholar 

  58. Gupta D, Bhattacharjee A (2019) Detailed investigation of N-(4-n-pentyl-oxybenzylidene)-4′-n-hexylaniline liquid crystal molecule. J Mol Struct 1196:66–77

    CAS  Google Scholar 

  59. Talaty ER, Raja S, Storhaug VJ, Dolle A, Carper WR (2004) Raman and infrared spectra and ab initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids. J Phys Chem B 108:13177–13184

    CAS  Google Scholar 

  60. Riley KE, Tran KA, Lane P, Murray JS, Politzer P (2016) Comparative analysis of electrostatic potential maxima and minima on molecular surfaces, as determined by three methods and a variety of basis sets. J Comput Sci 17:273–284

    Google Scholar 

  61. Mao JX (2014) Atomic charges in molecules: a classical concept in modern computational chemistry. Post Doc J: Rev 2:15–18

    Google Scholar 

  62. Bilgili S, Atac A, Bardak F (2020) Theoretical and experimental investigation of the spectroscopic features of and interionic interactions in 1-hexyl-3-methylimidazolium chloride,1-hexyl-3-methylimidazolium tetrafluoroborate and 1-hexyl-3-methylimidazolium hexafluorophosphate ionic liquids. J Mol Liq 301:112468

    Google Scholar 

  63. Fonkem CC, Ejuh GW, Tchangnwa Nya F, Yossa Kamsi RA, Tadjouteu Assatse Y, Ndjaka JMB (2019) A density functional theory (DFT) study of the doping effecton 2-cyano-3-[4 (diphenylamino) phenyl] acrylic acid. Chin J Physiol:207–212

  64. Mveme CD, Tchangnwa Nya F, Ejuh GW, Ndjaka JM (2021) A density functional theory (DFT) study of the doping effect on 4-[2-(2-N,N-dihydroxy amino thiophene) vinyl]benzenamine. SN applied Sciences 3:1–11

    Google Scholar 

  65. Ejuh GW, Abe MTO, Ghislain T, Ndjaka JMB (2018) Ab initio and DFT studies on the donor–acceptor molecules1,2,3-trihydroxy-9,10-anthraquinone; 1(methylamino)anthraquinone; 2-phenyl quinoxaline and 2-(4-aminophenyl) quinoxaline. Mater Focus 7:37–44

    CAS  Google Scholar 

  66. Fankam JB, Ejuh GW, Tchangnwa Nya F, Ndjaka JMB (2020) Theoretical investigation of the molecular structure, vibrational spectra, thermodynamic and nonlinear optical properties of 4, 5-dibromo-2, 7dinitro- fluorescein. Opt Quant Electron 52:1–23

    Google Scholar 

  67. Midoune A, Messaoudi A (2020) DFT/TD-DFT computational study of the tetrathiafulvalene-1,3-benzothiazole molecule to highlight its structural, electronic, vibrational and non-linear optical properties 23(2):143–158

  68. Zhou Z, Parr RG (1990) Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J Am Chem Soc 112(15):5720–5724

    CAS  Google Scholar 

  69. Baroudi B, Argoub K, Hadji D, Benkouider AM, Toubal K, Yahiaoui A, Djafri A (2020) Synthesis and DFT calculations of linear and nonlinear optical responses of novel 2-thioxo-3-N,(4-methylphenyl) thiazolidine-4 one. J Sulfur Chem 41(3):310–325

    CAS  Google Scholar 

  70. Abbas H, Shkir M, AlFaify S (2019) Density functional study of spectroscopy, electronic structure, linear and nonlinear optical properties of l-proline lithium chloride and l-proline lithium bromide monohydrate. For laser applications. Arab J Chem 12(8):2336–2346

    CAS  Google Scholar 

  71. Saraswathi V, Agilan S, Muthukumarasamy N, Velauthapillai D (2022) Synthesis, crystal structure, Hirshfeld surface, nonlinear optical properties, and computational studies of (E)-4-bromo-N′-(3, 4-dimethoxybenzylidene) benzohydrazide single crystal for nonlinear optical applications. Opt Mater 133:112896

    CAS  Google Scholar 

  72. Gheribi R, Hadji D, Ghallab R, Medjani M, Benslimane M, Trifa C, Denes G, Merazig H (2022) Synthesis, spectroscopic characterization, crystal structure, Hirshfeld surface analysis, linear and NLO properties of a new hybrid compound based on tin fluoride oxalate and organic amine molecule (C12N2H9) 2 [SnF2 (C2O4)2]2H2O”. J Mol Struct 1248;131392

    CAS  Google Scholar 

  73. Wang F, Landau DP, (2001) Efficient multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett 86(10): 2050–2053

    CAS  PubMed  Google Scholar 

  74. Pal B, Mishra M, Singh D, Kumar D (2022) A theoretical investigation of nonlinear optical and electronic molecular parameters of hexabutyloxytryphenylene and halogenated hexabutyloxytryphenylene molecules using density functional theory (DFT) for nonlinear device applications. Phys Scr 97(6):065808

    Google Scholar 

  75. Elangovan K, Boobalan MS, Senthil A, Vinitha G (2019) Investigation on growth, structural, characterization and DFT computing of imidazolium 3-nitrobenzoate (I3NB) single crystal–towards third order nonlinear optical applications. J Mol Struct 1196:720–733

    CAS  Google Scholar 

  76. Khoo IC (2007) Liquid crystal2nd edn. John Wiley & Sons

    Google Scholar 

  77. Guo S, Liang F, Liu L (2017) LiSr3Be3B3O9F4: a new ultraviolet nonlinear optical crystal for fourth-harmonic generation of Nd:YAG lasers. New J Chem 37:4269–4272

    Google Scholar 

Download references

Acknowledgements

V. Gautam and M. Mishra are thankful to University Grants Commission (UGC) New Delhi for providing non-NET Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

V. Gautam and M. Mishra performed research work, K. B. Thapa and J. Kumar provided research input, and D. Kumar and D. Singh supervised the research and finalized the manuscript. All authors are contributed in this research work.

Corresponding authors

Correspondence to Devendra Singh or Devesh Kumar.

Ethics declarations

Ethical approval

Ethical approval is not applicable for this research work.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, V., Mishra, M., Thapa, K.B. et al. Electronic, optical and spectroscopic properties of N-dialkyl-imidazolium hexafluorophosphate (CNMIM.PF6) ionic liquid crystal molecules investigated by computational methods. J Mol Model 29, 274 (2023). https://doi.org/10.1007/s00894-023-05672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05672-8

Keywords

Navigation