Skip to main content
Log in

Porphyrin and phthalocyanine heavy metal removal: overview of theoretical investigation for heterojunction organic solar cell applications

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Heavy metals are highly noxious, and their presence can cause diverse effects on living organisms and the environment. Crown ether porphyrins and phthalocyanines are known to effectively extract these pollutants and are also used in photovoltaic devices. This study aims to evaluate various factors that govern intramolecular charge transfer (ICT) and photo-injection processes, including maximum absorption wavelength (λmax), density of states (DOS), charge transfer dipole (μCT), light harvesting efficiency (LHE), open-circuit voltage (Voc), and free energy change of electron injection (ΔGinj) in order to investigate the performance of different compounds designed from metalloporphyrins for bulk-heterojunction organic solar cell (BHJ-OSC) applications. The porphyrin complex showed the best optoelectronic properties, with remarkable LHE values and CT amounts compared to phthalocyanine derivatives. The central metal played a significant role in optimizing the optical properties of the materials for use in solar cells. HgPr4O and CdPr4O were found to have optimal Voc values, resulting in effective injection, high electron, and hole mobilities, making them ideal materials for highly efficient BHJ-OSC devices.

Methods

Density functional theory (DFT) approach was employed with the B3LYP functional and the def2TZVP basis set as implemented in the Gaussian 16 revision C.01 program to investigate the designed complexes and to compute geometrical parameters, frontier molecular orbitals (FMOs), and natural bond orbital (NBO). Furthermore, the time-dependent density functional theory (TD-DFT) method was used to analyze the optical properties and photovoltaic characteristics of selected metalloporphyrins by examining the UV-Vis spectra. In summary, the study presents a thorough description of the structural and electronic properties of the investigated complexes and provides insights into their potential use in photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the relevant data has been given in the article.

References

  1. Peng X, Liu Z, Jiang D (2021) A review of multiphase energy conversion in wind power generation. Renew Sustain Energ Rev 147:111172. https://doi.org/10.1016/j.rser.2021.111172

    Article  Google Scholar 

  2. Yamaguchi M, Masuda T, Araki K, Sato D, Lee K, Kojima N, Takamoto T, Okumura K, Satou A, Yamada K, Nakado T, Zushi Y, Ohshita Y, Yamazaki M (2020) Development of high-efficiency and low-cost solar cells for PV-powered vehicles application. Prog Photovolt. https://doi.org/10.1002/pip.3343

  3. Piradi V, Yan F, Zhu X, Wong W-Y (2021) A recent overview of porphyrin-based π-extended small molecules as donors and acceptors for high-performance organic solar cells. Mater Chem Front. https://doi.org/10.1039/D1QM00952D

  4. He Q, Sheng W, Zhang M, Xu G, Zhu P, Zhang H, Yao Z, Gao F, Liu F, Liao X, Chen Y (2021) Revealing morphology evolution in highly efficient bulk heterojunction and pseudo-planar heterojunction solar cells by additives treatment. Adv Energy Mater 11(7):2003390. https://doi.org/10.1002/aenm.202003390

    Article  CAS  Google Scholar 

  5. Levitsky A, Schneider SA, Rabkin E, Toney MF, Frey GL (2021) Bridging the thermodynamics and kinetics of temperature-induced morphology evolution in polymer/fullerene organic solar cell bulk heterojunction. Mater Horiz 8(4):1272–1285. https://doi.org/10.1039/D0MH01805H

    Article  CAS  PubMed  Google Scholar 

  6. Ou Z, Qin J, Jin K, Zhang J, Zhang L, Yi C, Jin Z, Song Q, Sun K, Yang J, Xiao Z, Ding L (2022) Engeering of the alkyl chain branching point on a lactone polymer donor yield 17.81% efficiency. Mater Chem A 10:3314–3320. https://doi.org/10.1039/D1TA10233H

    Article  CAS  Google Scholar 

  7. Lin Y, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X, Yarali E, Seitkhan A, Bakr OM, El-Labban A, Schwingenschlögl U, Tung V, McCulloch I, Laquai F, Anthopoulos TD (2019) 17% efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT:PSS. Adv Mater:1902965. https://doi.org/10.1002/adma.201902965

  8. Wei Y, Li Z, Feng J, Chen Y, Zhang J, Li Y, Jiang W, Zhai T, LinY WZ, Wang Z, Liang N (2023) Suppressed trap density leads to versatile p-i-n heterojunction photodiode with enhanced photovoltaic/photodetection dual-function. Adv Opt Mater 11(9). https://doi.org/10.1002/adom.202202606

  9. Balakirev DO, Luponosov YN, Mannanov AL, Savchenko PS, Minenkov Y, Paraschuk DY, Ponomarenko SA (2020) Star-shaped benzotriindole-based donor-acceptor molecules: synthesis, properties and application in bulk heterojunction and single-material organic solar cells. Dyes Pigm:108523. https://doi.org/10.1016/j.dyepig.2020.108523

  10. Nencki M (1896) Ueber die biologischen Beziehungen des Blatt- und des Blutfarbstoffes. Ber Dtsch Chem Ges 29(3):2877–2883. https://doi.org/10.1002/cber.18960290392

    Article  Google Scholar 

  11. Braun A, Tcherniac J (1907) Über die Produkte der Einwirkung von Acetanhydrid auf Phthalamid. Ber Dtsch Chem Ges 40(2):2709–2714. https://doi.org/10.1002/cber.190704002202

    Article  CAS  Google Scholar 

  12. Sorokin AB (2021) From mononuclear iron phthalocyanines in catalysis to μ-nitrido diiron complexes and beyond. Catal Today 373:38–58. https://doi.org/10.1016/j.cattod.2021.03.016

    Article  CAS  Google Scholar 

  13. Liang Z, Wang H-Y, Zheng H, Zhang W, Cao R (2021) Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem Soc Rev 50(4):2540–2581. https://doi.org/10.1039/D0CS01482F

    Article  CAS  PubMed  Google Scholar 

  14. Kari N, Zannotti M, Giovannetti R, Řeha D, Minofar B, Abliz S, Yimit A (2022) Metallic effects on p-hydroxyphenyl porphyrin thin-film-based planar optical waveguide gas sensor: experimental and computational studies. Nanomaterials 12(6):944. https://doi.org/10.3390/nano12060944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hao Z-W, Dong M-M, Zhang R-Q, Wang C-K, Fu X-X (2021) An ultra-sensitive gas sensor based on a two-dimensional manganese porphyrin monolayer. Phys Chem Chem Phys 23(20):11852–11862. https://doi.org/10.1039/d1cp00747e

    Article  CAS  PubMed  Google Scholar 

  16. Lo P-C, Rodríguez-Morgade MS, Pandey RK, Ng DKP, Torres T, Dumoulin F (2020) The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem Soc Rev 49:1041–1056. https://doi.org/10.1039/C9CS00129H

    Article  CAS  PubMed  Google Scholar 

  17. Janas K, Boniewska-Bernacka E, Dyrda G, Słota R (2020) Porphyrin and phthalocyanine photosensitizers designed for targeted photodynamic therapy of colorectal cancer. Bioorg Med Chem 115926. https://doi.org/10.1016/j.bmc.2020.115926

  18. Liu R, Gao Y, Liu N, Suo Y (2020) Nanoparticles loading porphyrin sensitizers in improvement of photodynamic therapy for ovarian cancer. Photodiagnosis Photodyn Ther 102156. https://doi.org/10.1016/j.pdpdt.2020.102156

  19. Kuzmin SM, Chulovskaya SA, Parfenyuk VI (2020) Effect of substituent structure on formation and properties of poly-hydroxyphenyl porphyrin films obtained by superoxide-assisted method. Electrochimica Acta 136064. https://doi.org/10.1016/j.electacta.2020.136064

  20. Durantini JE, Rubio R, Solis CA, Macor L, Morales GM, Mangione MI, Heredia DA, Durantini EN, Otero L, Gervaldo M (2020) Electrosynthesis of a hyperbranched dendrimeric porphyrin polymer. optical and electronic characterization as material for bifunctional electrochromic supercapacitors. Sustain Energy Fuels 4:6125–6140. https://doi.org/10.1039/D0SE00199F

    Article  CAS  Google Scholar 

  21. Vebber MC, Grant TM, Brusso JL, Lessard BH (2020) Bis (tri-alkylsilyl oxide) silicon phthalocyanines: understanding the role of solubility on device performance as ternary additives in organic photovoltaics. Langmuir 36(10):2612–2621. https://doi.org/10.1021/acs.langmuir.9b03772

    Article  CAS  PubMed  Google Scholar 

  22. Park JM, Hong K-I, Lee H, Jang W-D (2021) Bioinspired applications of porphyrin derivatives. Acc Chem Res 54(9):2249–2260. https://doi.org/10.1021/acs.accounts.1c00114

    Article  CAS  PubMed  Google Scholar 

  23. Piradi V, Yan F, Zhu X, Wong W-Y (2021) A recent overview of porphyrin-based π-extended small molecules as donors and acceptors for high-performance organic solar cells. Mater Chem Front 5:7119–7133. https://doi.org/10.1039/D1QM00952D

    Article  CAS  Google Scholar 

  24. Matviyishyn M, Białońska A, Szyszko B (2022) Crownphyrins: metal-mediated transformations of the porphyrin-crown ether hybrids. Angew Chem 61(49):e202211671. https://doi.org/10.1002/anie.202211671

    Article  CAS  Google Scholar 

  25. Meez E, Rahdar A, Kyzas GZ (2021) Sawdust for the removal of heavy metals from water: a review. Molecules 26(14):4318. https://doi.org/10.3390/molecules26144318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zulfqar U, Ayub A, Hussain S, Waraich EA, El-Esawi M A, Ishfaq M, Ahmad M, Ali N, Maqsood MF (2022) Cadmium toxicity in plants: recent progress on morpho-physiological effects and remediation strategies. J Soil Sci Plant Nut 22:212–269. https://doi.org/10.1007/s42729-021-00645-3

  27. Hengstler JG, Bolm-Audorff U, Faldum A, Janssen K, Reifenrath M, Gotte W, Jung D, Mayer-Popken O, Fuchs J, Gebhard S, Gunter Bienfait H, Schlink K, Dietrich C, Faust D, Epe B, Oesch F (2003) Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis 24:63–73. https://doi.org/10.1093/carcin/24.1.63

    Article  CAS  PubMed  Google Scholar 

  28. Azevedo BF, Furieri LB, Pecanha FM, Wiggers GA, Vassallo PF, Maylla Ronacher Simoes MR, Fiorim J, de Batista PR, Fioresi M, Rossoni L, Stefanon I, Alonso MJ, Salaices M, Vassallo DV (2012) Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol 2012:1–11. https://doi.org/10.1155/2012/949048

    Article  CAS  Google Scholar 

  29. Kim K-H, Kabir E, Jahan SA (2016) A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater 306:376–385. https://doi.org/10.1016/j.jhazmat.2015.11.031

    Article  CAS  PubMed  Google Scholar 

  30. Scharber MC, Sariciftci NS (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38(12):1929–1940. https://doi.org/10.1016/j.progpolymsci.2013.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gaussian 16, Revision C01, Frisch, M J, Trucks GW, Schlegel HB, Scuseria GE, Robb M A, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz J V, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, PetroneA, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M J, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar S S, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox D J Gaussian Inc, Wallingford CT (2016).

  32. Dennington R, Keith TA, Millam JM (2016) GaussView, version 6.0. 16. Semichem Inc Shawnee Mission KS. http://gaussian.com/uvvisplot

  33. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  34. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98(45):11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  35. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1-3):51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  36. Zhao Y, Truhlar DG (2007) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120(1-3):215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  37. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. https://doi.org/10.1039/B810189B

    Article  CAS  PubMed  Google Scholar 

  38. Doust Mohammadi M, Abdullah HY (2020) The adsorption of chlorofluoromethane on pristine, and Al- and Ga-doped boron nitride nanosheets: a DFT, NBO, and QTAIM study. J Mol Model 26(10). https://doi.org/10.1007/s00894-020-04556-5

  39. Gocheva G, PetkovN LAG, Iliev S, Ivanova N, Petrova J, Mitrev Y, Madjarova G, Ivanova A (2019) Tautomerism in folic acid: combined molecular modelling and NMR study. J MolLiq 111392. https://doi.org/10.1016/j.molliq.2019.111392

  40. Teixeira Gomes JV, Cherem Peixoto da Silva A, Lamim Bello M, Rangel Rodrigues C, Aloise Maneira Corrêa Santos B (2019) Molecular modeling as a design tool for sunscreen candidates: a case study of bemotrizinol. J Mol Model 25(12). https://doi.org/10.1007/s00894-019-4237-7

  41. Curtiss LA, McGrath MP, Blaudeau J-P, Davis NE, Binning Jr RC, Radom L (1995) Extension of Gaussian-2 theory to molecules containing third-row atoms Ga-Kr. J Chem Phys 103:6104–6113. https://doi.org/10.1063/1.470438

    Article  CAS  Google Scholar 

  42. Dairi M, Elhorri AM, Tchouar N, Boumedel H, Azizi S (2021) Theoretical study by DFT of organometallic complexes based on metallocenes active in NLO. J Mol Model 27(6). https://doi.org/10.1007/s00894-021-04797-y

  43. Jeong K, Jeon Y, Kwon S (2017) Assessment of various DFT, DFT-D, and MP2 methods for studying FOX-7 detonation properties. J Mol Model 23(9). https://doi.org/10.1007/s00894-017-3427-4

  44. Ribeiro IHS, Reis DT, Pereira DH (2019) A DFT-based analysis of adsorption of Cd2+, Cr3+, Cu2+, Hg2+, Pb2+, and Zn2+, on vanillin monomer: a study of the removal of metal ions from effluents. J Mol Model 25(9). https://doi.org/10.1007/s00894-019-4151-z

  45. De Matos Mourão Neto I, ALP S, Tanaka AA, de Jesus Gomes Varela J (2017) Density functional theory study of interactions between carbon monoxide and iron tetraaza macrocyclic complexes, FeTXTAA (X = −Cl, −OH, −OCH3, −NH2, and –NO2). J MolModel 23(2). https://doi.org/10.1007/s00894-017-3250-y

  46. Tian Y, Chen W, Zhao Z, Xu L, Tong B (2020) Interaction and selectivity of 14-crown-4 derivatives with Li+, Na+, and Mg2+ metal ions. J Mol Model 26(4). https://doi.org/10.1007/s00894-020-4325-8

  47. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55(1):117–129. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  Google Scholar 

  48. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24(6):669–681. https://doi.org/10.1002/jcc.10189

    Article  CAS  PubMed  Google Scholar 

  49. Haloui A, Arfaoui Y (2010) A DFT study of the conformational behavior of para-substituted acetophenones in vacuum and in various solvents. J Mol Struct: THEOCHEM 950(1-3):13–19. https://doi.org/10.1016/j.theochem.2010.03.012

    Article  CAS  Google Scholar 

  50. Nakano M, Kishi R, Nitta T, Kubo T, Nakasuji K, Kamada K, Ohta K, Champagne B, Botek E, Yamaguchi K (2005) Second hyperpolarizability (γ) of singlet diradical system: dependence of γ on the diradical character. J Phys Chem A 109(5):885–891. https://doi.org/10.1021/jp046322x

    Article  CAS  PubMed  Google Scholar 

  51. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83(2):735–746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  52. Zouaghi MO, Doggui MY, Arfaoui Y (2021) Regio- and stereoselectivity of the [3+2] cycloaddition of nitrones with methyl-acetophenone: a DFT investigation. J Mol Graph Model 107:107960. https://doi.org/10.1016/j.jmgm.2021.107960

    Article  CAS  PubMed  Google Scholar 

  53. Gara R, Zouaghi MO, Alshandoudi LMH, Arfaoui Y (2021) DFT investigation of solvent, substituent, and catalysis effects on the intramolecular Diels-Alder reaction. J Mol Model 27(5). https://doi.org/10.1007/s00894-021-04729-w

  54. Omrani R, Zouaghi MO, Arfaoui Y (2019) Mechanistic density functional theory study of the Claisen rearrangement Diels-Alder cycloaddition domino sequence for the synthesis of the caged garcinia xanthone. J Mol Struct 127305. https://doi.org/10.1016/j.molstruc.2019.127305

  55. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1(1-6):104–113. https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  Google Scholar 

  56. Kronik L, Stein T, Refaely-Abramson S, Baer R (2012) Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals. J Chem Theory Comput 8(5):1515–1531. https://doi.org/10.1021/ct2009363

    Article  CAS  PubMed  Google Scholar 

  57. He X, Yin L, Li Y (2019) Design of organic small molecules for photovoltaic application with high open-circuit voltage (Voc). J Mater Chem C. https://doi.org/10.1039/C8TC06589F

  58. Qi B, Wang J (2012) Open-circuit voltage in organic solar cells. J Mater Chem 22(46):24315. https://doi.org/10.1039/C2JM33719C

    Article  CAS  Google Scholar 

  59. Gausssum : O’Boyle N M GaussSum, Version 2.0.5, 2007, Available at http://gausssum.sf.net

  60. Rashid MM, Hayati D, Kwak K, Hong J (2020) Theoretical investigation of azobenzene-based photochromic dyes for dye-sensitized solar cells. Nanomaterials 10(5):914. https://doi.org/10.3390/nano10050914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Casida ME (1995) Time-dependent density functional response theory for molecules. Recent Adv Comp Chem 155–192. https://doi.org/10.1142/9789812830586_0005

  62. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. ChemPhys Lett 256(4-5):454–464. https://doi.org/10.1016/0009-2614(96)00440-X

    Article  CAS  Google Scholar 

  63. Tozer DJ, Handy NC (1998) Improving virtual Kohn–Sham orbitals and eigenvalues: application to excitation energies and static polarizabilities. J Chem Phys 109(23):10180–10189. https://doi.org/10.1063/1.477711

    Article  CAS  Google Scholar 

  64. Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7(8):2498–2506. https://doi.org/10.1021/ct200308m

    Article  CAS  PubMed  Google Scholar 

  65. Yüzer AC, Kurtay G, Ince T, Yurtdaş S, Harputlu E, Ocakoglu K, Güllü M, Tozlu C, Ince M (2021) Solution-processed small-molecule organic solar cells based on non-aggregated zinc phthalocyanine derivatives: a comparative experimental and theoretical study. Mater Sci Semicond 129:105777. https://doi.org/10.1016/j.mssp.2021.105777

    Article  CAS  Google Scholar 

  66. Yavuz O, Alcay Y, Kaya K, Sezen M, Kirlangic Atasen S, Semih Yildirim M, Ozkilic Y, Şenyurt Tuzun N, Yilmaz I (2019) Superior sensor for Be2+ ion recognition via the unprecedented octahedral crystal structure of a one-dimensional coordination polymer of crown fused zinc phthalocyanine. Inorg Chem 58(1):909–923. https://doi.org/10.1021/acs.inorgchem.8b03038

    Article  CAS  PubMed  Google Scholar 

  67. Zouaghi MO, Arfaoui Y, Champagne B (2021) Density functional theory investigation of the electronic and optical properties of metallo-phthalocyanine derivatives. Opt Mater 120:111315. https://doi.org/10.1016/j.optmat.2021.111315

    Article  CAS  Google Scholar 

  68. Siddique SA, Arshad M, Naveed S, Mehboob MY, Adnan M, Hussain R, Ali B, Siddique MBA, Liu X (2021) Efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: a detailed DFT study. RSC Adv 11(44):27570–27582. https://doi.org/10.1039/D1RA04529F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hamam KJ, Alomari MI (2017) A study of the optical band gap of zinc phthalocyanine nanoparticles using UV–Vis spectroscopy and DFT function. Appl Nanosci 7(5):261–268. https://doi.org/10.1007/s13204-017-0568-9

    Article  CAS  Google Scholar 

  70. Sarı FA, Kazici M, Harputlu E, Bozar S, Koyun Ö, Sahin Y, Ugur N, Ince M, Günes S (2018) Zn phthalocyanine derivatives for solution-processed small molecule organic solar cells. Chemistry Select 3(48):13692–13699. https://doi.org/10.1002/slct.201802991

    Article  CAS  Google Scholar 

  71. Cuesta V, Singhal R, de la Cruz P, Sharma GD, Langa F (2019) Near-IR absorbing D-A-D Zn-porphyrin-based small molecule donors for organic solar cells with low voltage loss. ACS Appl Mater Interfaces 11(7):7216–7225. https://doi.org/10.1021/acsami.8b20917

    Article  CAS  PubMed  Google Scholar 

  72. Issa YM, Abdel-Latif SA, El-Ansary AL, Hassib HB (2021) The synthesis, spectroscopic characterization DFT/TD-DFT/PCM calculations of the molecular structure and NBO of the novel charge-transfer complexes of pyrazine Schiff base derivatives with aromatic nitro compounds. New J Chem 45(3):1482–1499. https://doi.org/10.1039/D0NJ05397J

    Article  CAS  Google Scholar 

  73. Jing J, Yang J, Zhang Z, Zhu Y (2021) Supramolecular zinc porphyrin photocatalyst with strong reduction ability and robust built-in electric field for highly efficient hydrogen production. Adv Energy Mater 11(29):2101392. https://doi.org/10.1002/aenm.202101392

    Article  CAS  Google Scholar 

  74. Al-Otaibi JS, Almuqrin AH, Mary YS, Thomas R (2020) Modeling the conformational preference. spectroscopic properties. UV light harvesting efficiency, biological receptor inhibitory ability and other physico-chemical properties of five imidazole derivatives using quantum mechanical and molecular mechanics tools. J Mol Liq 310:112871. https://doi.org/10.1016/j.molliq.2020.112871

    Article  CAS  Google Scholar 

  75. Hassen S, Zouaghi MO, Slimani I, Arfaoui Y, Ozdemir N, Ozdemir I, Gubuz N, Mansour L, Gatri R, Hamdi N (2022) Synthesis, crystal structures, DFT calculations, and catalytic application in hydrosilylation of acetophenone derivatives with triethylsilane of novel rhoduim-N-heterocyclic carbene (NHCs) complex. J Mol Struct 1265:133397. https://doi.org/10.1016/j.molstruc.2022.133397

    Article  CAS  Google Scholar 

  76. Liu Z, Wang X, Lu T, Yuan A, Yan X (2022) Potential optical molecular switch: lithium@cyclo[18] carbon complex transforming between two stable configurations. Carbon 187:78–85. https://doi.org/10.1016/j.carbon.2021.11.005

    Article  CAS  Google Scholar 

  77. Yin J-F, Bhattacharya D, Hsu Y-C, Tsai C-C, Lu K-L, Lin H-C, Chen J-G, Ho K-C (2009) Enhanced photovoltaic performance by synergism of light-cultivation and electronic localization for highly efficient dye-sensitized solar cells. J Mater Chem 19(38):7036. https://doi.org/10.1039/B905103A

    Article  CAS  Google Scholar 

  78. Lee J, Singh R, Sin DH, Kim HG, Song KC, Cho K (2015) A nonfullerene small molecule acceptor with 3D interlocking geometry enabling efficient organic solar cells. Adv Mater 28(1):69–80. https://doi.org/10.1002/adma.201504010

    Article  CAS  PubMed  Google Scholar 

  79. Ahmed S, Kalita DJ (2020) End-capped group manipulation of non-fullerene acceptors for efficient organic photovoltaic solar cell: a DFT study. Phys Chem Chem Phys 22:23586–23596. https://doi.org/10.1039/D0CP03814H

    Article  CAS  PubMed  Google Scholar 

  80. Bary G, Ghani L, Jamil MI, Arslan M, Ahmed W, Ahmad A, Sajid M, Ahmad R, Huang D (2021) Designing small organic non-fullerene acceptor molecules with diflorobenzene or quinoline core and dithiophene donor moiety through density functional theory. Sci Rep 11:19683. https://doi.org/10.1038/s41598-021-97662-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pratik SM, Datta A (2013) Computational design of concomitant type-I and type-II porphyrin sensitized solar cells. Phys Chem Chem Phys 15(42):18471. https://doi.org/10.1039/C3CP53193G

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The calculations were performed on the computers of the Consortium des “Equipements de Calcul Intensif” and particularly those of the High-Performance Computing Platform, which are supported by the FNRS-FRFC, the Walloon Region, and the University of Namur (Conventions No. GEQ U.G006.15, U.G018.19, 1610468, and RW/GEQ2016).

Author information

Authors and Affiliations

Authors

Contributions

Rayene Gara: calculations, writing, and data analysis. Mohamed Oussama Zouaghi: calculations, result analysis, and manuscript first draft. Youssef Arfaoui: conceiving problem, result analysis, manuscript editing, and supervision.

Corresponding author

Correspondence to Youssef Arfaoui.

Ethics declarations

Ethics approval and consent to participate

Confirm.

Consent for publication

Confirm.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2628 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gara, R., Zouaghi, M.O. & Arfaoui, Y. Porphyrin and phthalocyanine heavy metal removal: overview of theoretical investigation for heterojunction organic solar cell applications. J Mol Model 29, 259 (2023). https://doi.org/10.1007/s00894-023-05659-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05659-5

Keywords

Navigation