Skip to main content
Log in

The Dynamic Nature of Graphene Active Sites in the H2O Gasification process: A ReaxFF and DFT Study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

A steam-rich environment is a more promising application scenario for future coal-fired processes, while active sites are the key factor that determines the reactivity of carbonaceous fuels. The steam gasification process of carbon surfaces with different numbers of active sites (0, 12, 24, 36) was simulated using reactive molecular dynamics in the present study. The temperature for the decomposition of H2O and the gasification of carbon is determined using temperature-increasing simulation. The decomposition of H2O was influenced by two driving forces, thermodynamics and active sites on the carbon surface, which dominated the different reaction stages, leading to the observed segmentation phenomenon of the H2 production rate. The existence and number of initial active sites have a positive correlation with both two stages of the reaction, greatly reducing the activation energy. Residual OH groups play an important role in the gasification of carbon surfaces. The supply of OH groups through the cleavage of OH bonds in H2O is the rate-limiting step in the carbon gasification reaction. The adsorption preference at carbon defect sites was calculated using density functional theory. Two stable configurations (ether & semiquinone groups) can be formed with O atoms adsorbed on the carbon surface according to the number of active sites. This study will provide further insights into the tuning of active sites for advanced carbonaceous fuels or materials.

Methods

The large-scale atomic/molecule massively parallel simulator (LAMMPS) code combined with the reaction force-field method was used to carry out the ReaxFF molecular dynamics simulation, where the ReaxFF potentials were taken from Castro-Marcano, Weismiller and William. The initial configuration was built using Packmol, and the visualization of the calculation results was realized through Visual Molecular Dynamics (VMD). The timestep was set to 0.1 fs to detect the oxidation process with high precision. PWscf code in QUANTUM ESPRESSO (QE) package, was used to evaluate the relative stability of different possible intermediate configurations and the thermodynamic stability of gasification reactions. The projector augmented wave (PAW) and the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE-GGA) were adopted. Kinetic energy cutoffs of 50 Ry and 600 Ry, and a uniform mesh of 4 × 4 × 1 k-points were used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. IEA (2021). Global Energy Review https://www.iea.org/reports/global-energy-review-2021/renewables

  2. IEA, 2021World Energy Balances: Overview. https://www.iea.org/reports/world-energy-balances-overview.

  3. Dueso C, Mayoral MC, Andrés JM, Escudero AI, Díez LI (2019) Towards oxy-steam combustion: The effect of increasing the steam concentration on coal reactivity. Fuel 239:534–546. https://doi.org/10.1016/j.fuel.2018.11.035

    Article  CAS  Google Scholar 

  4. Yadav S, Mondal SS (2020) Modelling of oxy-pulverized coal combustion to access the influence of steam addition on combustion characteristics. Fuel 271:117611. https://doi.org/10.1016/j.fuel.2020.117611

    Article  CAS  Google Scholar 

  5. Callide Oxyfuel Project. https://www.csenergy.com.au/what-we-do/generating-energy/callide-power-station/callide-oxyfuel-project.

  6. Seepana S, Jayanti S (2010) Steam-moderated oxy-fuel combustion. Energ Conver Manage 51(10):1981–1988. https://doi.org/10.1016/j.enconman.2010.02.031

    Article  CAS  Google Scholar 

  7. Mao Z, Zhang L, Zhu X, Pan C, Yi B, Zheng C (2016) Modeling of an oxy-coal flame under a steam-rich atmosphere. Appl Energy 161:112–123. https://doi.org/10.1016/j.apenergy.2015.10.018

    Article  CAS  Google Scholar 

  8. Hossein Sahraei M, McCalden D, Hughes R, Ricardez-Sandoval LA (2014) A survey on current advanced IGCC power plant technologies, sensors and control systems. Fuel 137:245–259. https://doi.org/10.1016/j.fuel.2014.07.086

    Article  CAS  Google Scholar 

  9. Cuenca MA, Anthony EJ (1995) Pressurized Fluidized Bed Combustion. Springer, Netherlands

    Book  Google Scholar 

  10. Ahmed II, Gupta AK (2011) Kinetics of woodchips char gasification with steam and carbon dioxide. Appl Energy 88(5):1613–1619. https://doi.org/10.1016/j.apenergy.2010.11.007

    Article  CAS  Google Scholar 

  11. Umemoto S, Kajitani S, Hara S (2013) Modeling of coal char gasification in coexistence of CO2 and H2O considering sharing of active sites. Fuel 103:14–21. https://doi.org/10.1016/j.fuel.2011.11.030

    Article  CAS  Google Scholar 

  12. Liu H, Zhu H, Kaneko M, Kato S, Kojima T (2010) High-Temperature Gasification Reactivity with Steam of Coal Chars Derived under Various Pyrolysis Conditions in a Fluidized Bed. Energy Fuel 24(1):68–75. https://doi.org/10.1021/ef9004994

    Article  CAS  Google Scholar 

  13. Qiao L, Xu J, Sane A, Gore J (2012) Multiphysics modeling of carbon gasification processes in a well-stirred reactor with detailed gas-phase chemistry. Combust Flame 159(4):1693–1707. https://doi.org/10.1016/j.combustflame.2011.12.002

    Article  CAS  Google Scholar 

  14. Gil MV, Riaza J, Álvarez L, Pevida C, Pis JJ, Rubiera F (2012) A study of oxy-coal combustion with steam addition and biomass blending by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry 109(1):49–55. https://doi.org/10.1007/s10973-011-1342-y

    Article  CAS  Google Scholar 

  15. Yi B, Zhang L, Huang F, Mao Z, Zheng C (2014) Effect of H2O on the combustion characteristics of pulverized coal in O2/CO2 atmosphere. Appl Energy 132:349–357. https://doi.org/10.1016/j.apenergy.2014.07.031

    Article  CAS  Google Scholar 

  16. Roberts DG, Harris DJ (2007) Char gasification in mixtures of CO2 and H2O: Competition and inhibition. Fuel 86(17):2672–2678. https://doi.org/10.1016/j.fuel.2007.03.019

    Article  CAS  Google Scholar 

  17. Goyal A, Zabransky RF, Rehmat A (1989) Gasification kinetics of Western Kentucky bituminous coal char. Industrial & Engineering Chemistry Research 28(12):1767–1778. https://doi.org/10.1021/ie00096a006

    Article  CAS  Google Scholar 

  18. Bai Y, Gao Z, Chen N, Liu H, Yao J, Ma S, Shi X (2014) Elimination of small-sized Ag nanoparticles via rapid thermal annealing for high efficiency light trapping structure. Appl Surf Sci 315:1–7. https://doi.org/10.1016/j.apsusc.2014.07.029

    Article  CAS  Google Scholar 

  19. Gao M, Yang Z, Wang Y, Bai Y, Li F, Xie K (2017) Impact of calcium on the synergistic effect for the reactivity of coal char gasification in H2O/CO2 mixtures. Fuel 189:312–321. https://doi.org/10.1016/j.fuel.2016.10.100

    Article  CAS  Google Scholar 

  20. Tagutchou J-P, Van de Steene L, Escudero Sanz F, Salvador S (2013) Gasification of wood char in single and mixed atmospheres of H2O and CO2. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 35(13):1266–1276

    Article  CAS  Google Scholar 

  21. Bai Y, Lv P, Yang X, Gao M, Zhu S, Yan L, Li F (2018) Gasification of coal char in H2O/CO2 atmospheres: Evolution of surface morphology and pore structure. Fuel 218:236–246. https://doi.org/10.1016/j.fuel.2017.11.105

    Article  CAS  Google Scholar 

  22. Mengxia Q, Sheng S, Jian G, Zhijun S, Kai X, Jun X, Song H, Yi W, Jun X (2018) Effects of CO2/H2O on the characteristics of chars prepared in CO2/H2O/N2 atmospheres. Fuel Process Technol 173:262–269. https://doi.org/10.1016/j.fuproc.2018.01.003

    Article  CAS  Google Scholar 

  23. Meconi GM, Zangi R (2020) Adsorption-induced clustering of CO2 on graphene. Phys Chem Chem Phys 22(37):21031–21041. https://doi.org/10.1039/D0CP03482G

    Article  CAS  PubMed  Google Scholar 

  24. Akilan R, Malarkodi M, Vijayakumar S, Gopalakrishnan S, Shankar R (2019) Modeling of 2-D hydrogen-edge capped defected & boron-doped defected graphene sheets for the adsorption of CO2, SO2 towards energy harvesting applications. Appl Surf Sci 463:596–609. https://doi.org/10.1016/j.apsusc.2018.08.179

    Article  CAS  Google Scholar 

  25. Vallejos-Burgos F, Díaz-Pérez N, Silva-Villalobos Á, Jiménez R, García X, Radovic LR (2016) On the structural and reactivity differences between biomass- and coal-derived chars. Carbon 109:253–263. https://doi.org/10.1016/j.carbon.2016.08.012

    Article  CAS  Google Scholar 

  26. Radovic LR, Bockrath B (2005) On the Chemical Nature of Graphene Edges: Origin of Stability and Potential for Magnetism in Carbon Materials. J Am Chem Soc 127(16):5917–5927. https://doi.org/10.1021/ja050124h

    Article  CAS  PubMed  Google Scholar 

  27. Radovic LR (2009) Active Sites in Graphene and the Mechanism of CO2 Formation in Carbon Oxidation. J Am Chem Soc 131(47):17166–17175. https://doi.org/10.1021/ja904731q

    Article  CAS  PubMed  Google Scholar 

  28. Shen A, Zou Y, Wang Q, Dryfe RAW, Huang X, Dou S, Dai L, Wang S (2014) Oxygen Reduction Reaction in a Droplet on Graphite: Direct Evidence that the Edge Is More Active than the Basal Plane. Angew Chem Int Ed 53(40):10804–10808. https://doi.org/10.1002/anie.201406695

    Article  CAS  Google Scholar 

  29. Yamada Y, Kawai M, Yorimitsu H, Otsuka S, Takanashi M, Sato S (2018) Carbon Materials with Zigzag and Armchair Edges. ACS Appl Mater Interfaces 10(47):40710–40739. https://doi.org/10.1021/acsami.8b11022

    Article  CAS  PubMed  Google Scholar 

  30. Senda T, Yamada Y, Morimoto M, Nono N, Sogabe T, Kubo S, Sato S (2019) Analyses of oxidation process for isotropic pitch-based carbon fibers using model compounds. Carbon 142:311–326. https://doi.org/10.1016/j.carbon.2018.10.026

    Article  CAS  Google Scholar 

  31. Hermann G, HÜttinger KJ (1986) Mechanism of water vapour gasification of carbon—A new model. Carbon 24(6):705–713. https://doi.org/10.1016/0008-6223(86)90178-8

    Article  CAS  Google Scholar 

  32. Espinal JF, Mondragón F, Truong TN (2004) Density functional theory study of carbon-H2O reactions during gasification with steam, Prepr. Pap-Am Chem Soc, Div Fuel Chem 49(2):2

    Google Scholar 

  33. Kelemen SR, Freund H, Mims CA (1984) The dependence of H2O adsorption and reaction on the structure of the carbon substrate. Journal of Vacuum Science & Technology A 2(2):987–990. https://doi.org/10.1116/1.572498

    Article  CAS  Google Scholar 

  34. Oyarzún AM, García-Carmona X, Radovic LR (2020) Kinetics of oxygen transfer reactions on the graphene surface. Part II. H2O vs. CO2. Carbon 164:85–99. https://doi.org/10.1016/j.carbon.2020.01.011

    Article  CAS  Google Scholar 

  35. Montet GL, Myers GE (1968) Electron-microscopic investigation of the reaction of water vapor with single crystals of graphite—I. Reaction with edge atoms, Carbon 6(5):627–636. https://doi.org/10.1016/0008-6223(68)90006-7

    Article  CAS  Google Scholar 

  36. Espinal JF, Mondragón F, Truong TN (2009) Thermodynamic evaluation of steam gasification mechanisms of carbonaceous materials. Carbon 47(13):3010–3018

    Article  CAS  Google Scholar 

  37. Pittalis S, Proetto CR, Floris A, Sanna A, Bersier C, Burke K, Gross EKU (2011) Exact Conditions in Finite-Temperature Density-Functional Theory. Phys Rev Lett 107(16):163001. https://doi.org/10.1103/PhysRevLett.107.163001

    Article  CAS  PubMed  Google Scholar 

  38. Langreth DC, Perdew JP (1979) The gradient approximation to the exchange-correlation energy functional: A generalization that works. Solid State Commun 31(8):567–571. https://doi.org/10.1016/0038-1098(79)90254-0

    Article  Google Scholar 

  39. Li K, Khanna R, Zhang H, Ma S, Liang Z, Li G, Barati M, Zhang J (2021) Thermal behaviour during initial stages of graphene oxidation: Implications for reaction kinetics and mechanisms. Chem Eng J 421:129742. https://doi.org/10.1016/j.cej.2021.129742

    Article  CAS  Google Scholar 

  40. Li K, Khanna R, Zhang H, Conejo A, Ma S, Liang Z, Li G, Barati M, Zhang J (2021) Thermal behaviour, kinetics and mechanisms of CO2 interactions with graphene: An atomic scale reactive molecular dynamic study. Chem Eng J 425:131529. https://doi.org/10.1016/j.cej.2021.131529

    Article  CAS  Google Scholar 

  41. Zeng Liang RK, Li K, Guo F, Ma Y, Zhang H, Yushan B, Bi Z, Zhang J (2022. (in press)) Impact of oxidants O2, steam and CO2 on graphene oxidation: A critical comparison of reaction kinetics and gasification behaviour. Chem Eng J 450:138045

    Article  Google Scholar 

  42. Plimpton S (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comput Phys 1(117):1–19

    Article  Google Scholar 

  43. Van Duin AC, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. Chem A Eur J 105(41):9396–9409

    Google Scholar 

  44. Castro-Marcano F, Kamat AM, Russo Jr MF, van Duin AC, Mathews JP, Combustion of an Illinois No. (2012) 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combust Flame 159(3):1272–1285

    Article  CAS  Google Scholar 

  45. Weismiller MR, van Duin AC, Lee J, Yetter RA (2010) ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion. J Phys Chem A 114(17):5485–5492

    Article  CAS  PubMed  Google Scholar 

  46. An Q, Goddard III WA, Zybin SV, Jaramillo-Botero A, Zhou T (2013) Highly shocked polymer bonded explosives at a nonplanar interface: Hot-spot formation leading to detonation. J Phys Chem C 117(50):26551–26561

    Article  CAS  Google Scholar 

  47. Chenoweth K, Van Duin AC, Goddard WA (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Chem A Eur J 112(5):1040–1053

    CAS  Google Scholar 

  48. Bhoi S, Banerjee T, Mohanty K (2014) Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF. Fuel 136:326–333

    Article  CAS  Google Scholar 

  49. Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK, Junkermeier C, Engel-Herbert R, Janik MJ, Aktulga HM (2016) The ReaxFF reactive force-field: development, applications and future directions, npj Comput. Mater. 2(1):1–14

    Google Scholar 

  50. Zhang W, van Duin AC (2018) Improvement of the ReaxFF description for functionalized hydrocarbon/water weak interactions in the condensed phase. J Phys Chem B 122(14):4083–4092

    Article  CAS  PubMed  Google Scholar 

  51. Qiu Y, Zhong W, Shao Y, Yu A (2020) Reactive force field molecular dynamics (ReaxFF MD) simulation of coal oxy-fuel combustion. Powder Technol 361:337–348

    Article  CAS  Google Scholar 

  52. Yang Z, Sun Y, Ma F, Lu Y, Zhao T (2020) Pyrolysis mechanisms of graphene oxide revealed by ReaxFF molecular dynamics simulation. Appl Surf Sci 509:145247

    Article  CAS  Google Scholar 

  53. Liu J, Mao Q, Wang G, Xiao J, Zhong Q (2022) Removal and transformation mechanisms of nitrogen and sulfur in petcoke supercritical water gasification via ReaxFF simulation. Molecular Simulation 48(3):209–220. https://doi.org/10.1080/08927022.2021.2007908

    Article  CAS  Google Scholar 

  54. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: A package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164. https://doi.org/10.1002/jcc.21224

    Article  CAS  PubMed  Google Scholar 

  55. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  56. Bal KM, Neyts EC (2016) Direct observation of realistic-temperature fuel combustion mechanisms in atomistic simulations. Chem Sci 7(8):5280–5286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hong D, Si T, Li X, Guo X (2020) Reactive molecular dynamic simulations of the CO2 gasification effect on the oxy-fuel combustion of Zhundong coal char. Fuel Process Technol 199:106305. https://doi.org/10.1016/j.fuproc.2019.106305

    Article  CAS  Google Scholar 

  58. Salmon E, Behar F, Lorant F, Hatcher PG, P.-M. (2009) Marquaire, Early maturation processes in coal. Part 1: Pyrolysis mass balance and structural evolution of coalified wood from the Morwell Brown Coal seam. Org Geochem 40(4):500–509. https://doi.org/10.1016/j.orggeochem.2009.01.004

    Article  CAS  Google Scholar 

  59. E. Salmon, A.C.T. van Duin, F. Lorant, P.-M. Marquaire, W.A. Goddard, Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures, Org Geochem 40(12) (2009) 1195-1209. https://doi.org/10.1016/j.orggeochem.2009.09.001.

  60. Chang R, J.W.  Thoman, Physical chemistry for the chemical sciences. University Science Books Canada2014

  61. Scandolo S, Giannozzi P, Cavazzoni C, de Gironcoli S, Pasquarello A, Baroni S (2005) First-principles codes for computational crystallography in the Quantum-ESPRESSO package. Zeitschrift für Kristallographie-Crystalline Materials 220(5-6):574–579

    Article  CAS  Google Scholar 

  62. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502

    Article  PubMed  Google Scholar 

  63. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  PubMed  Google Scholar 

  64. Liang Z, Li K, Wang Z, Bu Y, Zhang J (2021) Adsorption and reaction mechanisms of single and double H2O molecules on graphene surfaces with defects: a density functional theory study. Phys Chem Chem Phys 23(34):19071–19082. https://doi.org/10.1039/D1CP02595C

    Article  CAS  PubMed  Google Scholar 

  65. Irfan MF, Usman MR, Kusakabe K (2011) Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review. Energy 36(1):12–40. https://doi.org/10.1016/j.energy.2010.10.034

    Article  CAS  Google Scholar 

  66.  Heterogeneous Solid State Reactions. Chemical Kinetics of Solids1995, pp 137–164. https://doi.org/10.1002/9783527615537.ch06

  67. Li K, Zhang J, Liu Z, Ning X, Wang T (2014) Gasification of Graphite and Coke in Carbon–Carbon Dioxide–Sodium or Potassium Carbonate Systems. Industrial & Engineering Chemistry Research 53(14):5737–5748. https://doi.org/10.1021/ie4039955

    Article  CAS  Google Scholar 

  68. Gorbachev VM (1978) Remarks on the application of the combined Kolmogorov — Erofeev — Kazeev — Avrami — Mampel equation in the kinetics of non-isothermal transformations. Journal of Thermal Analysis and Calorimetry 13(3):509–514. https://doi.org/10.1007/bf01912390

    Article  CAS  Google Scholar 

  69. Connors KA  Chemical Kinetics. The Study of Reaction Rates in Solution VCH1990

  70. Flanagan TB, Park CN, Oates WA (1995) Hysteresis in solid state reactions. Prog Solid State Chem 23(4):291–363. https://doi.org/10.1016/0079-6786(95)00006-G

    Article  CAS  Google Scholar 

  71. Al Soubaihi RM, Saoud KM, Dutta J (2018) Critical Review of Low-Temperature CO Oxidation and Hysteresis Phenomenon on Heterogeneous Catalysts. Catalysts 8(12):660

    Article  Google Scholar 

  72. Xuan W, Wang H, Yan S, Xia D (2022) Exploration on the steam gasification mechanism of waste PE plastics based on ReaxFF-MD and DFT methods. Fuel 315:123121. https://doi.org/10.1016/j.fuel.2021.123121

    Article  CAS  Google Scholar 

  73. Chen J, Pan X, Li H, Jin H, Fan J (2020) Molecular dynamics investigation on the gasification of a coal particle in supercritical water. Int J Hydrogen Energy 45(7):4254–4267. https://doi.org/10.1016/j.ijhydene.2019.12.002

    Article  CAS  Google Scholar 

  74. Yates Jr JT, McKee DW (1981) Kinetic isotope effect in the heterogeneous reaction of graphite with H2O (D2O). J Chem Phys 75(6):2711–2714. https://doi.org/10.1063/1.442339

    Article  CAS  Google Scholar 

  75. Mims CA, Pabst JK (1987) Alkali-catalyzed carbon gasification kinetics: Unification of H2O, D2O, and CO2 reactivities. J Catal 107(1):209–220. https://doi.org/10.1016/0021-9517(87)90286-7

    Article  CAS  Google Scholar 

  76. Barinov A, Malcioglu OB, Fabris S, Sun T, Gregoratti L, Dalmiglio M, Kiskinova M (2009) Initial stages of oxidation on graphitic surfaces: photoemission study and density functional theory calculations. J Phys Chem C 113(21):9009–9013

    Article  CAS  Google Scholar 

  77. Sun T, Fabris S, Baroni S (2011) Surface precursors and reaction mechanisms for the thermal reduction of graphene basal surfaces oxidized by atomic oxygen. J Phys Chem C 115(11):4730–4737

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Young Elite Scientist Sponsorship Program by CAST (Grant numbers [YESS20210090]), the National Natural Science Foundation of China (Grant numbers [51974019]), Beijing Natural Science Foundation (Grant numbers [J210017]), China Baowu Low Carbon Metallurgy Innovation Foudation (Grant numbers [BWLCF202119]), and the National Key Research and Development Program of China (Grant numbers [2017YFB0304300] and [2017YFB0304303]). Computations were completed on the Niagara supercomputer at the SciNet HPC Consortium in the Compute/Calcul Canada national computing platform. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund - Research Excellence, and the University of Toronto. The authors acknowledge Prof. Mansoor Barati of the University of Toronto for the technical support.

Author information

Authors and Affiliations

Authors

Contributions

Zeng Liang: Data curation, Formal analysis, Writing original draft. Kejiang Li: Conceptualization, Discussion, Review & editing. Supervision. Feng Guo: Discussion. Hang Zhang: Software. Yushan Bu: Software, Visualization. Jianliang Zhang: Investigation, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Kejiang Li or Jianliang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary informations

ESM 1:

Table S1. Fig. S1. Structural evolution of carbon surface cracking starting at 4450K. Fig. S2. Generation data for additional molecules (OH, H) as a function of time for (a) Pr; (b)12AS; (c) 24AS; (d) 36AS surfaces. Fig. S3. The (a) area; (b) perimeter; of the surface defect (light blue area) in Fig.6. Fig. S4. reaction intermediates of C-H2O system. Fig. S5. the energy difference between the 6AS-3O system with ether groups and the 6AS-3O system with semiquinone groups (Edifference = E6AS-semiquinone - E6AS-ether), which was eventually stabilized at 4.77 eV

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Li, K., Guo, F. et al. The Dynamic Nature of Graphene Active Sites in the H2O Gasification process: A ReaxFF and DFT Study. J Mol Model 29, 116 (2023). https://doi.org/10.1007/s00894-023-05527-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05527-2

Keywords

Navigation