Skip to main content
Log in

De novo drug design based on Stack-RNN with multi-objective reward-weighted sum and reinforcement learning

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

In recent decades, drug development has become extremely important as different new diseases have emerged. However, drug discovery is a long and complex process with a very low success rate, and methods are needed to improve the efficiency of the process and reduce the possibility of failure. Among them, drug design from scratch has become a promising approach. Molecules are generated from scratch, reducing the reliance on trial and error and prefabricated molecular repositories, but the optimization of its molecular properties is still a challenging multi-objective optimization problem.

Methods

In this study, two stack-augmented recurrent neural networks were used to compose a generative model for generating drug-like molecules, and then reinforcement learning was used for optimization to generate molecules with desirable properties, such as binding affinity and the logarithm of the partition coefficient between octanol and water. In addition, a memory storage network was added to increase the internal diversity of the generated molecules. For multi-objective optimization, we proposed a new approach which utilized the magnitude of different attribute reward values to assign different weights to molecular optimization. The proposed model not only solves the problem that the properties of the generated molecules are extremely biased towards a certain attribute due to the possible conflict between the attributes, but also improves various properties of the generated molecules compared with the traditional weighted sum and alternating weighted sum, among which the molecular validity reaches 97.3%, the internal diversity is 0.8613, and the desirable molecules increases from 55.9 to 92%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data are available for download, for example, the ChEMBL226 dataset is available for download at https://www.ebi.ac.uk/chembl/g/#browse/activities/filter/target_chembl_id%3ACHEMBL226, the ChEMBL237 dataset is available for download at https://www.ebi.ac.uk/chembl/g/#browse/activities/filter/target_chembl_id%3ACHEMBL237.

Code Availability

All python code for this study is freely available at https://github.com/PengWeiHu1/mul_RL/tree/master

References

  1. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  PubMed  Google Scholar 

  2. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model 28:31–36. https://doi.org/10.1021/ci00057a005

    Article  CAS  Google Scholar 

  3. Santos BP, Abbasi M, Pereira T et al (2021) Optimizing recurrent neural network architectures for de novo drug design. 34th International Symposium on Computer-Based Medical Systems (CBMS). IEEE, pp 172–177. https://doi.org/10.1109/CBMS52027.2021.00067

    Chapter  Google Scholar 

  4. Zheng S, Yan X, Gu Q et al (2019) QBMG: quasi-biogenic molecule generator with deep recurrent neural network. J Cheminf 11:1–12. https://doi.org/10.1186/s13321-019-0328-9

    Article  Google Scholar 

  5. Arús-Pous J, Johansson SV, Prykhodko O et al (2019) Randomized SMILES strings improve the quality of molecular generative models. J Cheminf 11:1–13. https://doi.org/10.1186/s13321-019-0393-0

    Article  Google Scholar 

  6. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780. https://doi.org/10.1007/978-3-642-24797-2-4

    Article  CAS  PubMed  Google Scholar 

  7. Blum LC, Reymond JL (2009) 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J Am Chem Soc 131:8732–8733. https://doi.org/10.1021/ja902302h

    Article  CAS  PubMed  Google Scholar 

  8. Blaschke T, Olivecrona M, Engkvist O et al (2018) Application of generative autoencoder in de novo molecular design. Mol Inform 37:1–2. https://doi.org/10.1002/minf.201700123

    Article  CAS  Google Scholar 

  9. Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT press

    Google Scholar 

  10. Zhou Z, Kearnes S, Li L et al (2019) Optimization of molecules via deep reinforcement learning. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-47148-x

    Article  CAS  Google Scholar 

  11. Jeon W, Kim D (2020) Autonomous molecule generation using reinforcement learning and docking to develop potential novel inhibitors. Sci Rep-uk 10:1–11. https://doi.org/10.1038/s41598-020-78537-2

    Article  CAS  Google Scholar 

  12. Silver D, Huang A, Maddison CJ et al (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529:484–489. https://doi.org/10.1038/nature16961

    Article  CAS  PubMed  Google Scholar 

  13. Pereira T, Abbasi M, Ribeiro B et al (2021) Diversity oriented deep reinforcement learning for targeted molecule generation. J Cheminf 13:1–17. https://doi.org/10.1186/s13321-021-00498-z

    Article  CAS  Google Scholar 

  14. Olivecrona M, Blaschke T, Engkvist O et al (2017) Molecular de-novo design through deep reinforcement learning. J Cheminf 9:1–14. https://doi.org/10.1186/s13321-017-0235-x

    Article  Google Scholar 

  15. Liu XH, Ye K, van Vlijmen HW et al (2019) An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor. J Cheminf 11:1–16. https://doi.org/10.1186/s13321-019-0355-6

    Article  Google Scholar 

  16. Williams RJ (1992) Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach Learn 8:229–256. https://doi.org/10.1007/978-1-4615-3618-5-2

    Article  Google Scholar 

  17. Panteleev J, Gao H, Jia L et al (2018) Recent applications of machine learning in medicinal chemistry. Bioorg Med Chem Lett 28:2807–2815. https://doi.org/10.1016/j.bmcl.2018.06.046

    Article  CAS  PubMed  Google Scholar 

  18. Mayer G, Heckel A (2006) Biologically active molecules with a “light switch”. Angew Chem Int Edit 45:4900–4921. https://doi.org/10.1002/anie.200600387

    Article  CAS  Google Scholar 

  19. Khemchandani Y, O’Hagan S, Samanta S et al (2020) DeepGraphMolGen, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach. J Cheminf 12:1–17. https://doi.org/10.1186/s13321-020-00454-3

    Article  CAS  Google Scholar 

  20. Preuer K, Renz P, Unterthiner T et al (2018) Fréchet ChemNet distance: a metric for generative models for molecules in drug discovery. J Chem Inf Model 58:1736–1741. https://doi.org/10.1021/acs.jcim.8b00234

    Article  CAS  PubMed  Google Scholar 

  21. Benhenda M (2018) Can AI reproduce observed chemical diversity? BioRxiv. 292177. https://doi.org/10.1101/292177

  22. Pereira T, Abbasi M, Oliveira JL et al (2021) Optimizing blood–brain barrier permeation through deep reinforcement learning for de novo drug design. Bioinformatics 37:i84–i92. https://doi.org/10.1093/bioinformatics/btab301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sweeney MD, Sagare AP, Zlokovic BV et al (2018) Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133–150. https://doi.org/10.1038/nrneurol.2017.188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu F, Zhang L, Jin Z et al (2020) Modeling programs hierarchically with stack-augmented LSTM. J Syst Software 164:110547. https://doi.org/10.1016/j.jss.2020.110547

    Article  Google Scholar 

  25. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488. https://doi.org/10.1002/minf.201000061

    Article  CAS  PubMed  Google Scholar 

  26. Chen JF, Eltzschig HK, Fredholm BB et al (2013) Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov 12:265–286. https://doi.org/10.1038/nrd3955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shang Y, Filizola M (2015) Opioid receptors: Structural and mechanistic insights into pharmacology and signaling. Eur J Pharmacol 763:206–213. https://doi.org/10.1016/j.ejphar.2015.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blaschke T, Engkvist O, Bajorath J et al (2020) Memory-assisted reinforcement learning for diverse molecular de novo design. J Cheminf. 12:1–17. https://doi.org/10.1186/s13321-020-00473-0

    Article  CAS  Google Scholar 

  29. Goel M, Raghunathan S, Laghuvarapu S et al (2021) MoleGuLAR: molecule generation using reinforcement learning with alternating rewards. J Chem Inf Model 61:5815–5826. https://doi.org/10.1021/acs.jcim.1c01341

    Article  CAS  PubMed  Google Scholar 

  30. Grisoni F, Moret M, Lingwood R et al (2020) Bidirectional molecule generation with recurrent neural networks. J Chem Inf Model 60:1175–1183. https://doi.org/10.1021/acs.jcim.9b00943

    Article  CAS  PubMed  Google Scholar 

  31. Elton DC, Boukouvalas Z, Fuge MD et al (2019) Deep learning for molecular design—a review of the state of the art. Mol Syst Des Eng 4:828–849. https://doi.org/10.1039/C9ME00039A

    Article  CAS  Google Scholar 

  32. Popova M, Isayev O, Tropsha A et al (2018) Deep reinforcement learning for de novo drug design. Sci Adv 4:eaap7885. https://doi.org/10.1126/sciadv.aap7885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminformatic 1:1–11. https://doi.org/10.1186/1758-2946-1-8

    Article  CAS  Google Scholar 

  34. Bickerton GR, Paolini GV, Besnard J et al (2012) Quantifying the chemical beauty of drugs. Nat Chem 4:90–98. https://doi.org/10.1038/nchem.1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616. https://doi.org/10.1021/cr60274a001

    Article  CAS  Google Scholar 

  36. Polykovskiy D, Zhebrak A, Sanchez-Lengeling B et al (2020) Molecular sets (MOSES): a benchmarking platform for molecular generation models. Front Pharmacol 11:565644. https://doi.org/10.3389/fphar.2020.565644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bento AP, Gaulton A, Hersey A et al (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090. https://doi.org/10.1093/nar/gkt1031

    Article  CAS  PubMed  Google Scholar 

  38. Gramatica P, Sangion A (2016) A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. J Chem Inf Model 56:1127–1131. https://doi.org/10.1021/acs.jcim.6b00088

    Article  CAS  PubMed  Google Scholar 

  39. Benet LZ, Hosey CM, Ursu O et al (2016) BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev 101:89–98. https://doi.org/10.1016/j.addr.2016.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sanchez-Lengeling B, Outeiral C, Guimaraes GL et al (2017) Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). https://doi.org/10.26434/chemrxiv.5309668.v3

    Chapter  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (12261060 and 21665016), and the Natural Science Foundation of Jiangxi Province (20192BAB204010).

Author information

Authors and Affiliations

Authors

Contributions

P.H., J.Z., J.Y., and S.S. contributed to the study conception, design and analysis. Material preparation and data collection were performed by P.H. The first draft of the manuscript was written by P.H. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shaoping Shi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 595 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, P., Zou, J., Yu, J. et al. De novo drug design based on Stack-RNN with multi-objective reward-weighted sum and reinforcement learning. J Mol Model 29, 121 (2023). https://doi.org/10.1007/s00894-023-05523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05523-6

Keywords

Navigation