Skip to main content
Log in

Structural, elastic, electronic, and optical properties of NaAlSi3O8 and Al4[Si4O10](OH)8 from first-principles calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Based on the first-principles calculations, this paper investigates the structural, elastic, electronic, and optical properties of albite and kaolinite, respectively. It is determined that both of them show structural stability, mechanical stability, and brittleness by calculating formation enthalpy, phonon dispersion, elastic, and mechanically relevant properties. Both materials are insulators with an indirect bandgap. By calculating the TDOS and PDOS, the main characteristics of the electronic structure of NaAlSi3O8 come from O-2p and Si-3p states, O-2p, and Al-3p states hybridization, similar to Al4[Si4O10](OH)8. The covalence of Si–O bonds in NaAlSi3O8 is greater than Al–O bonds, and the covalent property sequence of Si–O bands in NaAlSi3O8 is Si2-O3 > Si1-O4 > Si2-O2 > Si1-O8 > Si1-O6 > Si3-O2 > Si3-O4. The optical anisotropy of NaAlSi3O8 and Al4[Si4O10](OH)8 is analyzed.

Methods

First-principles density functional theory (DFT) calculation was carried out by the CASTEP computer program. The GGA-PW91 exchange–correlation was used. The energy convergence tolerance, the maximum force, and the maximum displacement were set in the calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request and available within the article.

References

  1. Li B, Knowles KM (2013) Modell Simul Mater Sci Eng 21:055012

    CAS  Google Scholar 

  2. Chen JH, Liu PS, Cheng W (2019) Multidiscip Model Mater Struct 15:659

    CAS  Google Scholar 

  3. Sánchez-Soto PJ, Garzón E, Pérez-Villarejo L, Angelopoulos GN, Eliche-Quesada D (2021) Minerals 11:232

    Google Scholar 

  4. Rouabhia F, Nemamcha A, Moumeni H (2018) Cerâmica 64:126

    CAS  Google Scholar 

  5. Lerdprom W, Chinnam RK, Jayaseelan DD, Lee WE (2016) J Eur Ceram Soc 36:4319

    CAS  Google Scholar 

  6. Pali M, Das S, Das SK (2015) Bull Mater Sci 38:551

    Google Scholar 

  7. Gaudio SJ, Lesher CE, Maekawa H, Sen S (2015) Geochim Cosmochim Acta 157:28

    CAS  Google Scholar 

  8. Siqueira RL, Peitl O, Zanotto ED (2016) J Sol-Gel Sci Technol 80:619

    CAS  Google Scholar 

  9. Frizzo RG, Zaccaron A, Nandi VDS, Bernardin AM (2020) Journal of Building Engineering 31:101432

    Google Scholar 

  10. Wang JY, Wang ZY, Yang LM, Yang GX, Miao CL, Lv PM (2017) Energy 141:1650

    CAS  Google Scholar 

  11. Cao Z, Wang QZ, Cheng HF (2021) Chin Chem Lett 32:2617

    CAS  Google Scholar 

  12. Alaba PA, Sani YM, Daud WMAW (2015) RSC Adv 5:11127

    Google Scholar 

  13. Barbosa LV, Marcal L, Nassar EJ, Calefifi PS, Vicente MA, Trujillano R, Rives V, Gil A, Korili SA, Ciuffifi KJ, de Faria  EH (2014) Catalysis Today 246:133

  14. Zhao J, Gao W, Qin XZ, He MC (2020) Journal of the International Adsorption Society 26:443

    CAS  Google Scholar 

  15. Chen GB, Zhao HZ, Li X, Xia SW (2021) Appl Clay Sci 210:106120

    CAS  Google Scholar 

  16. Sarma GK, Gupta SS, Bhattacharyya KG (2019) SN Applied Sciences 1:211

    CAS  Google Scholar 

  17. Zhang B, Kang JT, Kang TH (2018) Appl Surf Sci 439:792

    CAS  Google Scholar 

  18. Underwood T, Erastova V, Greenwell HC (2016) J Phys Chem 120:11433

    CAS  Google Scholar 

  19. Xu HL, Jin XZ, Chen P, Shao G, Wang HL, Chen DL, Lu HX, Zhang R (2015) Ceram Int 41:6463

    CAS  Google Scholar 

  20. Detellier C (2018) Chem Rec 18:868

    CAS  PubMed  Google Scholar 

  21. Kambel RD, Aliyu BA, Barminas JT, Akinterinwa A (2017) International Journal of Materials and Chemistry 7:14

    CAS  Google Scholar 

  22. Liu TQ, Hu MY, Lu WT, Zhan JX, Cui XY, Zhan XH, Yu J (2019) Physica B 567:55

    CAS  Google Scholar 

  23. Blasco M, Gimeno MJ, Auqué LF (2017) Procedia Earth and Planetary Science 17:120

    Google Scholar 

  24. Sims M, Rucks M, Lobanov S, Young J, Daly JA, Pakhomova A, Konopkova Z, Liermann HP, Hrubiak R, Whitaker ML, Glotch TD, Ehm L (2019) Lunar and Planetary Science Conference 50:2132

    Google Scholar 

  25. Li YH, Wang WZ, Huang SC, Wang K, Wu ZQ (2019) Geochim Cosmochim Acta 245:374

    CAS  Google Scholar 

  26. Qin T, Wu F, Wu ZQ, Huang F (2016) Contrib Mineral Petrol 171:1

    CAS  Google Scholar 

  27. Zhu C, Zhang YL, Rimstidt JD, Gong L, Burkhart JAC, Chen KY, Yuan HL (2021) Geochim Cosmochim Acta 303:15

    CAS  Google Scholar 

  28. Xu LH, Peng TF, Tian J, Lu ZY, Hu YH, Sun W (2017) Appl Surf Sci 426:1005

    CAS  Google Scholar 

  29. Pietzsch A, Nisar J, Jämstorp E, Gråsjö J, Arhammar C, Ahuja R, Rubensson JE (2015) J Electron Spectrosc Relat Phenom 202:11

    CAS  Google Scholar 

  30. Shafei L, Adhikari P, Ching WY (2021) Curr Comput-Aided Drug Des 11:618

    CAS  Google Scholar 

  31. Weck PF, Kimb E, Jové-Colóna CF (2015) Dalton Trans 44:12550

    CAS  PubMed  Google Scholar 

  32. Yang H, He MC, Lu CS, Gong WL (2019) Science China Physics. Mechanics & Astronomy 62:1

    Google Scholar 

  33. Zhang ZJ, Zhou Q, Zhuang L, Zhao ZF (2021) Mol Phys 119:1896047

    Google Scholar 

  34. Wang J, Xia SW, Yu LM (2015) Appl Surf Sci 330:411

    CAS  Google Scholar 

  35. Aliatis I, Lambruschi E, Mantovani L, Bersani D, Andò S, Gatta GD, Gentile P, Salvioli-Mariani E, Prencipe M, Tribaudinoa M, Lottici PP (2015) J Raman Spectrosc 46:501

    CAS  Google Scholar 

  36. Cano NF, Santos LHED, Chubaci JFD, Watanabe S (2015) Spectrochim Acta Part A Mol Biomol Spectrosc 137:471

    CAS  Google Scholar 

  37. Amulele GM, Lanati AW, Clark SM (2022) Am Miner 107:614

    Google Scholar 

  38. Brown JM, Angel RJ, Ross NL (2016) Journal of Geophysical Research: Solid Earth 121:663

    Google Scholar 

  39. Lacivita V, D’Arco P, Mustapha S, Bernardes DF, Dovesi R, Erba A, Rérat M (2020) Physics and Chemistry of Minerals 47:45

  40. Liu XX, Liu XW, Hu YH (2015) Clay Miner 50:199

    CAS  Google Scholar 

  41. Zhu HW, Xiao XY, Guo ZH, Han XQ, Liang YQ, Zhang Y, Zhou C (2018) Appl Clay Sci 161:310

    CAS  Google Scholar 

  42. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) Z Kristallogr 220:567

    CAS  Google Scholar 

  43. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    CAS  Google Scholar 

  44. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Google Scholar 

  45. Winter JK, Ghose S, Okamura FP (1977) Am Miner 62:921

    CAS  Google Scholar 

  46. Young RA, Hewat AW (1988) Clays Clay Miner 36:225

    CAS  Google Scholar 

  47. Yu ED, Pan Y (2022) Journal of Materials Chemistry A 46:24866

    Google Scholar 

  48. Yu ED, Pan Y (2022) Electrochim Acta 435:141391

    CAS  Google Scholar 

  49. Chen S, Pan Y (2022) Appl Surf Sci 599:154041

    CAS  Google Scholar 

  50. Pan Y, Yu ED (2022) Int J Hydrogen Energy 47:27608

    CAS  Google Scholar 

  51. Pan Y (2023) J Phys Chem Solids 174:111152

    CAS  Google Scholar 

  52. Liu WH, Liu QJ, Zhong M, Gan YD, Liu FS, Li XH, Tang B (2022) Acta Mater 236:118137

    CAS  Google Scholar 

  53. Born M (1940) Math Proc Cambridge Philos Soc 36:160

    CAS  Google Scholar 

  54. Gao J, Liu QJ, Jiang CL, Fan DH, Zhang M, Liu FS, Tang B (2022) Chinese Journal of High Pressure Physics 36:051101

    Google Scholar 

  55. Chung DH, Buessem WR (1967) J Appl Phys 38:2010

    CAS  Google Scholar 

  56. Pugh SF (1954) The London, Edinburgh, and Dublin Philosophical Magazine and Journal of. Science 45:823

    CAS  Google Scholar 

  57. Gao J, Zeng W, Tang B, Zhong M, Liu QJ (2021) Mater Sci Semicond Process 121:105447

    CAS  Google Scholar 

  58. Horsley SAR, Artoni M, Rocca GCL (2015) Nat Photonics 9:436

    CAS  Google Scholar 

  59. Zhong M, Zeng W, Liu FS, Fan DH, Tang B, Liu QJ (2022) Mater Today Phys 22:100583

    CAS  Google Scholar 

  60. Ambrosch-Draxl C, Sofo JO (2006) Comput Phys Commun 175:1

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Sichuan Science and Technology Development Project (Grant No. 2021ZYD0027) and the Original Scientific Research Instrument and Equipment Development Project of Southwest Jiaotong University (Grant No. XJ2021KJZK055).

Author information

Authors and Affiliations

Authors

Contributions

Ya-Le Tao: data curation, formal analysis, investigation, methodology, writing—original draft; Juan Gao: formal analysis, investigation, writing—review and editing; Qi-Jun Liu: conceptualization, investigation, methodology, project administration, supervision, writing—review and editing; Zheng-Tang Liu: methodology, software; all authors read and approved the final manuscript.

Corresponding authors

Correspondence to Juan Gao or Qi-Jun Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable for both human and/or animal studies, we allow the journal to review all the data, and we confirm the validity of results. There is none of the financial relationships. This work was not published previously and it is not submitted to more than one journal. It is also not split up into several parts to submit. No data have been fabricated or manipulated.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, YL., Gao, J., Liu, QJ. et al. Structural, elastic, electronic, and optical properties of NaAlSi3O8 and Al4[Si4O10](OH)8 from first-principles calculations. J Mol Model 29, 111 (2023). https://doi.org/10.1007/s00894-023-05508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05508-5

Keywords

Navigation