Skip to main content
Log in

Electronic band structure and density of state modulation of amphetamine and ABW type–zeolite adsorption system: DFT-CASTEP analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structured abstract is combined from two parts:

Context

The adsorption behavior of amphetamine (AMP) on the surface of ABW-aluminum silicate zeolite was implemented with a computational depiction. Studies of the electronic band structure (EBS) and density of states (DOS) were conducted to demonstrate transition behavior attributed to aggregate-adsorption interaction. Thermodynamic illustration of the studied adsorbate was studied to investigate the structural behavior of the adsorbate on the surface of the zeolite adsorbent. The best investigated models were assessed with adsorption annealing calculations related to adsorption energy surface. The periodic adsorption-annealing calculation model predicted a highly stable energetic adsorption system based on total energy, adsorption energy, rigid adsorption energy, deformation energy, and dEad/dNi ratio.

Methods

Cambridge sequential total energy package (CASTEP) based on density functional theory (DFT), under Perdew-Burke-Ernzerhof (PBE) basis set, was used to depict the energetic levels of the adsorption mechanism between AMP and ABW-aluminum silicate zeolite surface. DFT-D dispersion correction function was postulated for weakly interacted systems. Structural and electronic elucidations were described with geometrical optimization, FMOs, and MEP analyses. Thermodynamic parameters such as entropy, enthalpy, Gibbs free energy, and heat capacity over temperature dependence studied the conductivity behavior over localized energetic states based on Fermi level and described the disorder degree of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available in the supplementary file.

References

  1. Zhang C, Li J, Xiao M, Wang Di, Yan Qu, Zou L, Zheng C, Zhang J (2022) Oral colon-targeted mucoadhesive micelles with enzyme-responsive controlled release of curcumin for ulcerative colitis therapy. Chin Chem Lett 33(11):4924–4929. https://doi.org/10.1016/j.cclet.2022.03.110

    Article  CAS  Google Scholar 

  2. Hu S, Hui Z, Lirussi F, Garrido C, Ye XY, Xie T (2021) Small molecule DNA-PK inhibitors as potential cancer therapy: a patent review (2010-present). Expert Opin Ther Pat 31(5):435–452. https://doi.org/10.1080/13543776.2021.1866540

    Article  CAS  PubMed  Google Scholar 

  3. Liu S, Li Q, Chen K, Zhang Q, Li G, Zhuo L, Xie T (2020) The emerging molecular mechanism of m6A modulators in tumorigenesis and cancer progression. Biomed Pharmacother 127:110098. https://doi.org/10.1016/j.biopha.2020.110098

    Article  CAS  PubMed  Google Scholar 

  4. Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q, Xu H (2022) Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer 21(1):144. https://doi.org/10.1186/s12943-022-01616-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jian-Shu Lou, Li-Ping Zhao, Zhi-Hui Huang, Xia-Yin Chen, Jing-Ting Xu, William Chi-Shing TAI, Karl W.K. Tsim, Yi-Tao Chen, Tian Xie,Ginkgetin derived from Ginkgo biloba leaves enhances the therapeutic effect of cisplatin via ferroptosis-mediated disruption of the Nrf2/HO-1 axis in EGFR wild-type non-small-cell lung cancer. Phytomedicine,Volume 80,2021,153370,ISSN 0944–7113 https://doi.org/10.1016/j.phymed.2020.153370.

  6. Heal DJ, Smith SL, Gosden J, Nutt DJ (2013) Amphetamine, past and present–a pharmacological and clinical perspective. J Psychopharmacol 27(6):479–496. https://doi.org/10.1177/0269881113482532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pugliese A, Tobyn M, Hawarden LE, Abraham A, Blanc F (2022) New Development in Understanding Drug-Polymer Interactions in Pharmaceutical Amorphous Solid Dispersions from Solid-State Nuclear Magnetic Resonance. Mol Pharmaceutics 19(11):3685–3699. https://doi.org/10.1021/acs.molpharmaceut.2c00479

    Article  CAS  Google Scholar 

  8. Gao Y, Zhang H, Lirussi F, Garrido C, Ye XY, Xie T (2020) Dual inhibitors of histone deacetylases and other cancer-related targets A pharmacological perspective. Biochem Pharmacol 182:114224. https://doi.org/10.1016/j.bcp.2020.114224

    Article  CAS  PubMed  Google Scholar 

  9. Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, Zhou Q(Tony) (2021) Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharmaceutica Sinica B 11(8):2505–2536. https://doi.org/10.1016/j.apsb.2021.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M, Han X, Xiang Y, Huang X, Lin H, Xie T (2018) RSL3 Drives Ferroptosis Through GPX4 Inactivation and ROS Production in Colorectal Cancer. Front Pharmacol 22(9):1371. https://doi.org/10.3389/fphar.2018.01371

    Article  CAS  Google Scholar 

  11. Li J, Zhao J, Tan T, Liu M, Zeng Z, Zeng Y, Zhang L, Fu C, Chen D, Xie T (2020) Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: A Comprehensive Review. Int J Nanomedicine 15:2563–2582. https://doi.org/10.2147/IJN.S243223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim IH, Park JH, Cheong IW, Kim JH (2003) Swelling and drug release behavior of tablets coated with aqueous hydroxypropyl methylcellulose phthalate (HPMCP) nanoparticles. J Control Release 89(2):225–233. https://doi.org/10.1016/s0168-3659(03)00089-0

    Article  CAS  PubMed  Google Scholar 

  13. Musial W, Kokol V, Voncina B (2009) The application of conductivity measurements for preliminary assessments of chlorhexidine and lidocaine hydrochloride release from methylcellulose gel at various temperatures. Polim Med 39(2):17–29

    CAS  PubMed  Google Scholar 

  14. Barrer RM, White EA (1951) The hydrothermal chemistry of silicates. Part I. Synthetic lithium aluminosilicates. J Chem Soc 1267–1278.

  15. Yao ZT, Xia MS, Ye Y, Zhang L (2009) Synthesis of zeolite Li-ABW from fly ash by fusion method Author links open overlay panel. J Hazard Mater 170(2–3):639–644. https://doi.org/10.1016/j.jhazmat.2009.05.018

    Article  CAS  PubMed  Google Scholar 

  16. Grima JN, Gatt R, Zammit V, Alderson A, Evans KE (2005) On the suitability of empirical models to simulate the mechanical properties of αcristobalite. Xjenza 10:24–31

    Google Scholar 

  17. Sanchez-Valle C, Sinogeikin SV, Lethbridg ZAD, Walton RI, Smith CW, Evans KE, Bass JD (2005) Brillouin scattering study on the single-crystal elastic properties of natrolite and analcime zeolites. J Appl Phys 98:053508–053514. https://doi.org/10.1063/1.2014932

    Article  CAS  Google Scholar 

  18. Williams JJ, Evans KE, Walton RI (2006) On the Elastic Constants of the Zeolite Chlorosodalite. Appl Phys Lett 88:021914–021916. https://doi.org/10.1063/1.2162859

    Article  CAS  Google Scholar 

  19. Wang ZB, Wang HT, Mitra AP, Huang LM, Yan Y (2001) Pure-silica zeolite low-k dielectric thin films. Adv Mater 13:746–749. https://doi.org/10.1002/1521-4095(200105)13:10%3c746::AID-ADMA746%3e3.0.CO;2-J

    Article  CAS  Google Scholar 

  20. Martin RM (2004) Electronic Structure: Basic Theory and Practical Methods. Cambridge Univ, Press

    Book  Google Scholar 

  21. Nørskov JK, Rossmeisl BJ, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46

    Article  PubMed  Google Scholar 

  22. Harrison WA (1989) Electronic Structure and the Properties of Solids. Dover Books on Physics

    Google Scholar 

  23. Wang F, Efficient LDP (2001) Multiple-Range Random Walk Algorithm to Calculate the Density of States. Phys Rev Lett 86(10):2050–2053. https://doi.org/10.1103/PhysRevLett.86.2050

    Article  CAS  PubMed  Google Scholar 

  24. Chan MKY, Ceder G (2010) "Efficient Band Gap Prediction for Solids," The American Physical Society.

  25. Kasap SO, Capper P (2006) Springer handbook of electronic and photonic materials. Springer 54:327

    Google Scholar 

  26. Sun J, Perdew JP, Ruzsinszky A (2015) Semilocal density functional obeying a strongly tightened bound for exchange. Proc Natl Acad Sci U S A 112(3):685–689. https://doi.org/10.1073/pnas.1423145112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  28. Ma SK, Brueckner KA (1968) Correlation energy of an electron gas with a slowly varying high density. Phys Rev 165(1):18–31. https://doi.org/10.1103/PhysRev.165.18

    Article  Google Scholar 

  29. Antoniewicz PR, Kleinman L (1985) Kohn-Sham exchange potential exact to first order in rho (K.ρ(K → 0)/ρ0. Phys Rev B Condens Matter. 31(10):6779–6781. https://doi.org/10.1103/PhysRevB.31.6779

    Article  CAS  PubMed  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  31. Perdew JP et al (1992) Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B Condens Matter 46(11):6671–6687. https://doi.org/10.1103/PhysRevB.46.6671

    Article  CAS  PubMed  Google Scholar 

  32. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B Condens Matter 54(23):16533–16539. https://doi.org/10.1103/PhysRevB.54.16533

    Article  CAS  PubMed  Google Scholar 

  33. Accelrys (2016) Materials Studio. http://accelrys.com/products/collaborative-science/biovia-materials-studio/

  34. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ (2002) First-principles simulation: ideas, illustrations and the CASTEP code, Payne MC. J Phys Condens Matter 14:2717. https://doi.org/10.1088/0953-8984/14/11/301

    Article  CAS  Google Scholar 

  35. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Zeitschrift für Kristallographie - Crystalline Materials 220(5–6):567–570. https://doi.org/10.1524/zkri.220.5.567.65075

    Article  CAS  Google Scholar 

  36. Kaur GG (2016) Shuchi; Gaganpreet; Dharamvir International Nuclear Information System (INIS), Keya

  37. Motta C, El-Mellouhi F, Kais S, Tabet N, Alharbi F, Sanvito S (2015) Revealing the role of organic cations in hybrid halide perovskite CH3 NH3PbI3. Nat Commun 6. https://doi.org/10.1038/ncomms8026

  38. Tkatchenko A, Scheffler M (2009) Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102(7):6–9. https://doi.org/10.1103/PhysRevLett.102.073005

    Article  CAS  Google Scholar 

  39. Elizabeth ER, Huertas FJ, Hernández-Laguna A, Ignacio Sainz-Díaz C (2017) A DFT study of the adsorption of glycine in the interlayer space of montmorillonite. Phys Chem Chem Phys 19:14961–14971. https://doi.org/10.1039/C7CP02300F

    Article  Google Scholar 

  40. Abd El-Mageed HR, Ibrahim MAA (2021) Elucidating the adsorption and detection of amphetamine drug by pure and doped Al12N12, and Al12P12nano-cages, a DFT study. J Mol Liquids 326:115297. https://doi.org/10.1016/j.molliq.2021.115297

    Article  CAS  Google Scholar 

  41. Arshad MF, Wu LN, El Kasmi A, Qin W, Tian ZU (2021) Ab Initio Calculation of Surface Thermochemistry for Popular Solid Transition Metal-Based Species. ACS Omega 6:22525–22536. https://doi.org/10.1021/acsomega.1c02178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ali AM, Yahya N, Mijinyawa A, Kwaya MY, Sikiru S (2020) Molecular simulation and microtextural characterization of quartz dissolution in sodium hydroxide. J Petroleum Explor Prod Technol 10:2669–2684. https://doi.org/10.1007/s13202-020-00940-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the financial support from smart critical infrastructure research center – Alexandria University – High performance computing Lab.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Doaa S. El-Sayed.

Ethics declarations

Ethics approval and consent to participate

The manuscript does not contain studies with animal subjects.

Competing interests

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, D.S. Electronic band structure and density of state modulation of amphetamine and ABW type–zeolite adsorption system: DFT-CASTEP analysis. J Mol Model 29, 96 (2023). https://doi.org/10.1007/s00894-023-05501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05501-y

Keywords

Navigation