Skip to main content
Log in

First-principle investigations of structural, electronic, thermal, and mechanical properties of AlP1−xBix alloys

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

In this work, a comprehensive study concerning the physical properties of ternary alloys system (AlP1−xBix) at different concentrations is presented. The obtained results from our first-principle calculations are compared with previously reported studies in the literature and discussed in detail. Our computed results are found in a nice agreement where available with earlier reported results. Electronic band structures at the above-mentioned concentrations are also determined. Likewise, the impact of the varying temperature and pressure on Debye temperature, heat capacity, and entropy is analyzed as well. Furthermore, elastic constants and related elastic moduli results are also computed. Our results show that alloys are stable and found to be in brittle nature. This is the first quantitative study related to ternary alloys (AlP1−xBix) at mentioned concentrations. We soon expect the experimental confirmation of our predictions.

Method

The calculations are performed, at concentrations x=0.0, 0.25, 0.5, 0.75, and 1.0 by using the “full potential (FP) linearized (L) augmented plane wave plus local orbital (APW+lo) method framed within density functional theory (DFT)” as recognized in the “WIEN2k computational code”. The “quasi-harmonic Debye model” approach is employed to determine the thermal properties of the title alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ma KY, Fang ZM, Cohen RM, Stringfellow GB (1992). J Electron Mater 21:143

    CAS  Google Scholar 

  2. Oe K, Okamoto H (1998). Jpn J Appl Phys 37:L1283

    Google Scholar 

  3. Oszwaldowski M, Berus T, Szade J, Jozwiak K, Olejnikzak I, Konarski P (2001). Cryst Res Technol 36:1155

    CAS  Google Scholar 

  4. Oe K (2002). Jpn J Appl Phys 41:2801

    CAS  Google Scholar 

  5. Francoeur S, Seong MJ, Mascarenhas A, Tixier S, Adamcyk M, Tiedje T (2003). Appl Phys Lett 82:3874

    CAS  Google Scholar 

  6. Tixier S, Adamcyk M, Tiedje T, Francoeur S, Mascarenhas A, Wei P, Schiettekatte F (2003). Appl Phys Lett 82:2245

    CAS  Google Scholar 

  7. Vaddiraju S, Sunkara MK, Chin AH, Ning CZ, Dholakia GR, Meyyappan M (2007). J Phys Chem C 111:7339

    CAS  Google Scholar 

  8. Fluegel B, Francoeur S, Mascarenhas A, Tixier S, Young EC, Tiedje T (2006). Phys Rev Lett 97:067205

    CAS  PubMed  Google Scholar 

  9. Jorgensen JD, Clark JB (1980). Phys Rev B 22:6149

    CAS  Google Scholar 

  10. Degtyareva VF, Winzenick M, Holzapfel WB (1998). Phys Rev B 57:4975

    CAS  Google Scholar 

  11. Belabbes A, Zaoui A, Ferhat M (2008). J Phys Condens Matter 20:415221

    Google Scholar 

  12. Ferhat M, Zaoui A (2006). Phys Rev B 73:115107

    Google Scholar 

  13. Pilevar Shahri R, Akhtar A (2017). Chin Phys B 26:093107

    Google Scholar 

  14. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001). J Appl Phys 89:5815

    CAS  Google Scholar 

  15. Ketterson AA, Masselink WT, Gedymin JS, Klem J, Peng C, Kopp WF, Morkoc H, Gleason KR (1986). IEEE Trans Electron Dev 33:564

    Google Scholar 

  16. Salmi L, Meradji H, Ghemid S, Nemiri O, Oumelaz F, Khenata R (2020). Phase Transit 93:843

    CAS  Google Scholar 

  17. Chine Z, Fitouri H, Zaied I, Rebey A, El Jani B (2011). J Cryst Growth 330:35

    CAS  Google Scholar 

  18. Moussa I, Fitouri H, Rebey A, El Jani B (2008). Thin Solid Films 516:8372

    CAS  Google Scholar 

  19. Madouri D, Bouka A, Zaoui A, Ferhat M (2008). Comput Mater Sci 43:818

    CAS  Google Scholar 

  20. Alaya R, Mbarki M, Rebey A, Postnikov AV (2016). Curr Appl Phys 16:288

    Google Scholar 

  21. Boumaza A, Ghemid S, Meradji H, Nemiri O, Belghit R, Oumelaz F, Hamioud L, Gous MH, Khenata R, Bin Omran S, Xiaotian W (2021). J Electron Mater 50:598

    CAS  Google Scholar 

  22. Bencherif B, Abdiche A, Moussa R, Khenata R, Xiaotian W (2020). Mol Phys 118:e1608380

    Google Scholar 

  23. Anderson OK (1975). Phys Rev B 12:3060

    Google Scholar 

  24. Hohenberg P, Kohn W (1964). Phys Rev B 136:864

    Google Scholar 

  25. Blaha P, Schwarz K, Madsen GH, Kvasnicka D, Luitz J, WIEN2K (2008) An Augmented Plane Wave Plus Local Orbitals Program For Calculating Crystal Properties, Vienna

  26. Wu Z, Cohen RE (2006). Phys Rev B 73:235116

    Google Scholar 

  27. Tran F, Blaha P (2009). Phys Rev Lett 102:226401

    PubMed  Google Scholar 

  28. Becke AD, Johnson ER (2006). J Chem Phys 124:221101

    PubMed  Google Scholar 

  29. Murnaghan FD (1944). Proc Natl Acad Sci U S A 30:244

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hellwege KH, Madelung O (1982) Landolt–Brönstein, New Series Group III, vol 17a. Springer, Berlin

    Google Scholar 

  31. Bouhemadou A, Khenata R, Kharoubi M, Seddik T, Reshak AH, Al-Douri Y (2009). Comput Mater Sci 45:474

    CAS  Google Scholar 

  32. Rodríguez-Hernández P, Munoz A (1992). Semicond Sci Technol 7:1437

    Google Scholar 

  33. Cohen ML (1985). Phys Rev B 32:7988

    CAS  Google Scholar 

  34. Herrera-Cabrera MJ, Rodríguez-Hernández P, Munoz A (2001). Phys Status Solidi B 223:411

    CAS  Google Scholar 

  35. Wang SQ, Ye HQ (2002). Phys Rev B 66:235111

    Google Scholar 

  36. Aouadi S, Rodriguez-Hernández P, Kassali K, Muñoz A (2008). Phys Lett A 372:5340

    CAS  Google Scholar 

  37. Annane F, Meradji H, Ghemid S, El Haj HF (2010). Comput Mater Sci 50:274

    CAS  Google Scholar 

  38. Reshak AH, Auluck S (2007). Physica B 395:143

    CAS  Google Scholar 

  39. Briki M, Abdelouhab M, Zaoui A, Ferhat M (2009). Superlatt Microstruct 45:80

    CAS  Google Scholar 

  40. Khanin DV, Kulkova SE (2005). Russ Phys J 48:70

    CAS  Google Scholar 

  41. Ahmed R, Fazal-e-Aleem, Javed Hashemifar S, Akbarzadeh H (2008). Physica B 403:1876

    CAS  Google Scholar 

  42. Benalia S, Merabet M, Rached D, Al Douri Y, Abidri A, Khenata R, Labair M (2015). Mater Sci Semicond Process 31:493

    CAS  Google Scholar 

  43. Thompson MP, Auner GW, Zheleva TS, Jones KA, Simko SJ, Hilfiker JN (2001). J Appl Phys 89:3331

    CAS  Google Scholar 

  44. Huang MZ, Ching WY (1993). Phys Rev B 47:9449

    CAS  Google Scholar 

  45. Sze SM (1981) Physics of Semiconductor Device. Wiley Interscience Publication, New York, pp 848–849

    Google Scholar 

  46. Amrani B, Achour H, Louhibi S, Tebboune A, Sekkal N (2008). Solid State Commun 148:59

    CAS  Google Scholar 

  47. Yao Y (2014) Ab-initio research on hot carrier solar cell materials PhD thesis. University of New South Wales Australia. https://doi.org/10.26190/unsworks/18410

    Book  Google Scholar 

  48. Blanco MA, Francisco E, Luaňa V (2004). Comput Phys Commun 158:57

    CAS  Google Scholar 

  49. Blanco MA, Pendăs AM, Francisco E, Recio JM, Franco R (1996). J Mol Struct (THEOCHEM) 368:245

    CAS  Google Scholar 

  50. Flórez M, Recio JM, Francisco E, Blanco MA, Pendás AM (2002). Phys Rev B 66:144112

    Google Scholar 

  51. Poirier JP (2000) Introduction to the physics of the Earth's Interior. Cambridge University Press, Oxford, p 39

    Google Scholar 

  52. Debye P (1912). Ann Phys 344:789

    Google Scholar 

  53. Petit AT, Dulong PL (1819). Ann Chem Phys 10:395

    Google Scholar 

  54. Hou FHJ, Kong FJ, Yang JW, Xie LX, Yang SX (2014). Phys Scr 89:065703

    CAS  Google Scholar 

  55. Bouarissa N, Annane F (2002). Mater Sci Eng B 95:100

    Google Scholar 

  56. Goryunova NA, Borschevskii AS, Tretiakov DN, Willardson RK, Beer AC (1968) Semiconductors and Semimetals, vol 4. Academic, New York, p 3

    Google Scholar 

  57. Varshney D, Joshi G, Varshney M, Shriya S (2010). Solid State Sci 12:864

    CAS  Google Scholar 

  58. Mehl MJ (1993). Phys Rev B 47:2493

    CAS  Google Scholar 

  59. Blaha P, Schwarz K, Sorantin P, Trickey SK (1990). Comput Phys Commun 59:339

    Google Scholar 

  60. Lakel S, Okbi F, Ibrir M, Almi K, 4th International Congress in Advances in Applied Physics and Materials Science (APMAS) 2014).

    Google Scholar 

  61. Börstein L (1992) Semicondutors: Physics of Group IV Elements and III-V compounds, vol III/17a. Springer-Verlag, Berlin

    Google Scholar 

  62. Wang J, Yip S (1993). Phys Rev Lett 71:4182

    CAS  PubMed  Google Scholar 

  63. Gao XP, Jiang YH, Zhou R, Feng J (2014). J Alloys Compd 587:819

    CAS  Google Scholar 

  64. Huang B, Duan YH, Sun Y, Peng MJ, Chen S (2015). J Alloys Compd 635:213

    CAS  Google Scholar 

  65. Voigt W (1928) Lehrbuch der kristallphysik Taubner. Leipzig, Berlin

    Google Scholar 

  66. Reuss A, Angew A (1929). Math Mech 9:49

    CAS  Google Scholar 

  67. Hill R (1952). Proc Phys Soc Lond A 65:349

    Google Scholar 

  68. Pugh SF (1954). Philos Mag 45:823

    CAS  Google Scholar 

  69. Frantsevich IN, Voronov FF, Bokuta SA (1983) Elastic constants and elastic moduli of metals and insulators handbook. In: Frantsevich IN (ed) Naukova Dumka. Kiev, pp 60–180

    Google Scholar 

  70. Pettifor DG (1992). Mater Sci Technol 8:345

    CAS  Google Scholar 

  71. Haines J, Léger JM, Bocquillon G (2001). Annu Rev Mat Res 31:1

    CAS  Google Scholar 

  72. Fu H, Li D, Peng F, Gao T, Cheng X (2008). Comput Mater Sci 44:774

    CAS  Google Scholar 

  73. Tian Y, Xu B, Zhao Z (2012). Int J Refract Met Hard Mater 33:93

    CAS  Google Scholar 

  74. Razumovskiy VI, Isaev EI, Ruban AV, Korzhavyi PA (2008). Intermetallics 16:982

    CAS  Google Scholar 

  75. Ranganathan SI, Ostoja-Starzewski M (2008). Phys Rev Lett 101:055504

    PubMed  Google Scholar 

  76. Vahldiek FW, Mersol SA (1968) Anisotropy in single-crystal refractory compounds. Plenum Press, New York

    Google Scholar 

  77. Ravindran P, Fast L, Korzhavyi PA, Johansson B, Wills J, Eriksson O (1998). J Appl Phys 84:4891

    CAS  Google Scholar 

  78. Huang B, Duan YH, Hu WC, Sun Y, Chen S (2015) Ceram Int 41:6831

  79. Wu Q, Li S (2012) Comput Mater Sci 53:436

Download references

Acknowledgements

The author Bin-Omran acknowledges the Researchers Supporting Project number (RSP-2023 R82), King Saud University, Riyadh, Saudi Arabia.

Data availability statement

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Data collection and analysis were performed by Oumelaz, Nemiri, Ghemid, and Boumaza. The first draft of the manuscript was written by Meradji, Ahmed, and Bin Omran, and all authors commented on previous versions of the manuscript. Khenata and Tahir supervising, reviewing, and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to H. Meradji.

Ethics declarations

Ethics approval

All authors approve the ethics.

Consent to participate

All the authors agree to participate in this investigation.

Consent for publication

All authors give their consent for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oumelaz, F., Nemiri, O., Boumaza, A. et al. First-principle investigations of structural, electronic, thermal, and mechanical properties of AlP1−xBix alloys. J Mol Model 29, 124 (2023). https://doi.org/10.1007/s00894-023-05497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05497-5

Keywords

Navigation