Skip to main content

Advertisement

Log in

Pharmacoinformatics-based screening of active compounds from Vitex negundo against lymphatic filariasis by targeting asparaginyl-tRNA synthetase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Lymphatic filariasis, generally called as elephantiasis, is a vector-borne infectious disease caused by the filarial nematodes, mainly Wuchereria bancrofti, Brugia malayi, and Brugia timori, which are transmitted through mosquitoes. The infection affects the normal flow of lymph leading to abnormal enlargement of body parts, severe pain, permanent disability, and social stigma. Due to the development of resistance as well as toxic effects, existing medicines for lymphatic filariasis are becoming ineffective in killing the adult worms. It is essential to search novel filaricidal drugs with new molecular targets. Asparaginyl-tRNA synthetase (PDB ID: 2XGT) belongs to the group of aminoacyl-tRNA synthetases that catalyze specific attachment of amino acids to their tRNA during protein biosynthesis. Plants and their extracts are well-known medicinal practice for the management of several parasitic infectious diseases including filarial infections.

Methods

In this study, asparaginyl-tRNA synthetase of Brugia malayi was used as a target to perform virtual screening of plant phytoconstituents of Vitex negundo from IMPPAT database, which exhibits anti-filarial and anti-helminthic properties. A total of sixty-eight compounds from Vitex negundo were docked against asparaginyl-tRNA synthetase using Autodock module of PyRx tool. Among the 68 compounds screened, 3 compounds, negundoside, myricetin, and nishindaside, exhibited a higher binding affinity compared to standard drugs. The pharmacokinetic and physicochemical prediction, stability of ligand-receptor complexes via molecular dynamics simulation, and density functionality theory were done further for the top-scored ligands with receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

This work was conducted using the free software Autodock Vina module in PyRx 0.8 software and GROMACS.

References

  1. Cromwell EA, Schmidt CA, Kwong KT, Pigott DM, Mupfasoni D, Biswas G, Shirude S, Hill E, Donkers KM, Abdoli A (2020) The global distribution of lymphatic filariasis, 2000–18: a geospatial analysis. Lancet Glob Health 8:e1186–e1194. https://doi.org/10.1016/S2214-109X(20)30286-2

    Article  Google Scholar 

  2. Chandy A, Thakur AS, Singh MP, Manigauha A (2011) A review of neglected tropical diseases: filariasis. Asian Pac J Trop Med 4:581–586. https://doi.org/10.1016/S1995-7645(11)60150-8

    Article  CAS  PubMed  Google Scholar 

  3. Joshi, P.: Epidemiology of lymphatic filariasis. In Lymphatic filariasis; Springer: 1–14. (2018). https://doi.org/10.1007/978-981-13-1391-2_1

  4. Anil N, Talluri VR (2015) Lymphatic filariasis: drug targets and nematicidal plants. J Pharm Sci Res 7:928

    CAS  Google Scholar 

  5. Yamamoto T, Daniel BW, Rodriguez JR, Kageyama T, Sakai H, Fuse Y, Tsukuura R, Yamamoto N (2022) Radical reduction and reconstruction for male genital elephantiasis: superficial circumflex iliac artery perforator (SCIP) lymphatic flap transfer after elephantiasis tissue resection. J Plast Reconstr Aesthet Surg 75:870–880. https://doi.org/10.1016/j.bjps.2021.08.011

    Article  PubMed  Google Scholar 

  6. Kamgno J, Djeunga HN (2020) Progress towards global elimination of lymphatic filariasis. Lancet Glob Health 8:e1108–e1109. https://doi.org/10.1016/S2214-109X(20)30323-5

    Article  PubMed  Google Scholar 

  7. Geary TG, Haque M (2021) Human helminth infections: a primer. In: Humphries DL, Scott ME, Vermund H (eds) Nutrition and Infectious Diseases. Springer, Cham, pp 189–215. https://doi.org/10.1007/978-3-030-56913-6_7

  8. Schorderet-Weber S, Noack S, Selzer PM, Kaminsky R (2017) Blocking transmission of vector-borne diseases. Int J Parasitol Drugs Drug Resist 7:90–109. https://doi.org/10.1002/9783527802883.ch3

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arya H, Coumar MS (2014) Virtual screening of traditional Chinese medicine (TCM) database: identification of fragment-like lead molecules for filariasis target asparaginyl-tRNA synthetase. J Mol Model 20:1–13. https://doi.org/10.1007/s00894-014-2266-9

    Article  CAS  Google Scholar 

  10. Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1:219–227. https://doi.org/10.1016/S1535-6108(02)00051-X

    Article  CAS  PubMed  Google Scholar 

  11. Goa KL, McTavish D, Clissold SP (1991) Ivermectin Drugs 42:640–658. https://doi.org/10.2165/00003495-199142040-00007

    Article  CAS  PubMed  Google Scholar 

  12. Ottesen E, Ismail M, Horton J (1999) The role of albendazole in programmes to eliminate lymphatic filariasis. Parasitol Today 15:382–386. https://doi.org/10.1016/S0169-4758(99)01486-6

    Article  CAS  PubMed  Google Scholar 

  13. Misra-Bhattacharya S, Shahab M (2018) Progress in the treatment and control of lymphatic filariasis. In Lymphatic Filariasis; Epidemiology, Treatment and Prevention - The Indian Perspective, Springer, pp 47–58. https://doi.org/10.1007/978-981-13-1391-2_4

  14. Chandrasekar R, Sivanesan S, Natarajan M, Naveena K, Preetha N, Karthika S, Vimalraj S, Kron M, Dhanasekaran A (2021) Evaluation of the angiogenic properties of Brugia malayi asparaginyl-tRNA synthetase and its mutants: a study on the molecular target for antifilarial drug development. Mol Biochem Parasitol 246:111426

    Article  CAS  PubMed  Google Scholar 

  15. Arfin SM, Simpson DR, Chiang C, Andrulis IL, Hatfield GW (1977) A role for asparaginyl-tRNA in the regulation of asparagine synthetase in a mammalian cell line. Proc Natl Acad Sci 74:2367–2369. https://doi.org/10.1073/pnas.74.6.2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sukuru SCK, Crepin T, Milev Y, Marsh LC, Hill JB, Anderson RJ, Morris JC, Rohatgi A, O’Mahony G, Grøtli M (2006) Discovering new classes of Brugia malayi asparaginyl-tRNA synthetase inhibitors and relating specificity to conformational change. J Comput Aided Mol Des 20:159–178. https://doi.org/10.1007/s10822-006-9043-5

    Article  CAS  PubMed  Google Scholar 

  17. Crepin T, Peterson F, Haertlein M, Jensen D, Wang C, Cusack S, Kron M (2011) A hybrid structural model of the complete Brugia malayi cytoplasmic asparaginyl-tRNA synthetase. J Mol Biol 405:1056–1069. https://doi.org/10.1016/j.jmb.2010.11.049

    Article  CAS  PubMed  Google Scholar 

  18. Dushenkov V, Raskin I (2008) New strategy for the search of natural biologically active substances. Russ J Plant Physiol 55:564–567. https://doi.org/10.1134/S1021443708040201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Süntar I (2020) Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochem Rev 19:1199–1209. https://doi.org/10.1007/s11101-019-09629-9

    Article  CAS  Google Scholar 

  20. Singh S, Singh DB, Singh S, Shukla R, Ramteke PW, Misra K (2019) Exploring medicinal plant legacy for drug discovery in post-genomic era. Biol Sci 89:1141–1151. https://doi.org/10.1007/s40011-018-1013-x

    Article  Google Scholar 

  21. Vishwanathan A, Basavaraju R (2010) A review on Vitex negundo L: A medicinally important plant. Eur J Biol Sci 3:30–42

    Google Scholar 

  22. Basri F, Sharma H, Firdaus S, Jain P, Ranjan A (2014) A review of ethnomedicinal plant-Vitex negundo Linn. Int J Adv Res 2:882–894

    Google Scholar 

  23. Zheng CJ, Li HQ, Ren SC, Xu CL, Rahman K, Qin LP, Sun YH (2015) Phytochemical and pharmacological profile of Vitex negundo. Phytother Res 29:633–647. https://doi.org/10.1002/ptr.5303

    Article  PubMed  Google Scholar 

  24. Ladda P, Magdum C (2012) Vitex negundo L: Ethnobotany, phytochemistry and pharmacology-a review. Int J Adv Pharm Biol Chem 1:111–120

    Google Scholar 

  25. Behera DR, Bhatnagar S (2018) Filariasis: role of medicinal plant in lymphatic filariasis. Int J Herb Med 6:40–46

    Google Scholar 

  26. Babu S, Nutman TB (2014) Immunology of lymphatic filariasis. Parasite Immunol 36:338–346. https://doi.org/10.1111/pim.12081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hotterbeekx A, Perneel J, Vieri MK, Colebunders R, Kumar-Singh S (2021) The secretome of filarial nematodes and its role in host-parasite interactions and pathogenicity in onchocerciasis-associated epilepsy. Front Cell Infect Microbiol 11:662766. https://doi.org/10.3389/fcimb.2021.662766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dhanasekaran JJ, Solaiyappan S, Dhanraj DM, Chatterjee S, Kron M, Dhanasekaran A (2014) Expression and characterisation of asparagine-tRNA synthetase: the key enzyme that mediates angiogenesis in lymphatic filariasis (585.10). FASEB J 28:585510. https://doi.org/10.1096/fasebj.28.1_supplement.585.10

    Article  Google Scholar 

  29. Rupani R, Chavez A (2018) Medicinal plants with traditional use: Ethnobotany in the Indian subcontinent. Clin Dermatol 36:306–309. https://doi.org/10.1016/j.clindermatol.2018.03.005

    Article  PubMed  Google Scholar 

  30. Alamri MA (2020) Pharmacoinformatics and molecular dynamic simulation studies to identify potential small-molecule inhibitors of WNK-SPAK/OSR1 signaling that mimic the RFQV motifs of WNK kinases. Arab J Chem 13:5107–5117. https://doi.org/10.1016/j.arabjc.2020.02.010

    Article  CAS  Google Scholar 

  31. Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99:1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mali SN, Thorat BR, Gupta DR, Pandey A (2021) Mini-review of the importance of hydrazides and their derivatives—synthesis and biological activity. Eng Proc 11:21. https://doi.org/10.3390/ASEC2021-11157

    Article  Google Scholar 

  33. Mohanraj K, Karthikeyan BS, Vivek-Ananth R, Chand R, Aparna S, Mangalapandi P, Samal A (2018) IMPPAT: a curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci Rep 8:1–17. https://doi.org/10.1038/s41598-018-22631-z

    Article  CAS  Google Scholar 

  34. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaplan W, Littlejohn TG (2001) Swiss-PDB viewer (deep view). Brief Bioinform 2:195–197. https://doi.org/10.1093/bib/2.2.195

    Article  CAS  PubMed  Google Scholar 

  36. Abasian Z, Rostamzadeh A, Mohammadi M, Hosseini M, Rafieian-Kopaei M (2018) A review on role of medicinal plants in polycystic ovarian syndrome: pathophysiology, neuroendocrine signaling, therapeutic status and future prospects. Middle East Fertil Soc J 23:255–262. https://doi.org/10.1016/j.mefs.2018.04.005

    Article  Google Scholar 

  37. Jendele L, Krivak R, Skoda P, Novotny M, Hoksza D (2019) PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res 47:W345–W349. https://doi.org/10.1093/nar/gkz424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. In Chemical biology; Methods and Protocols, Springer Protocols, pp 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19

  39. Kalimuthu AK, Panneerselvam T, Pavadai P, Pandian SRK, Sundar K, Murugesan S, Ammunje DN, Kumar S, Arunachalam S, Kunjiappan S (2021) Pharmacoinformatics-based investigation of bioactive compounds of Rasam (South Indian recipe) against human cancer. Sci Rep 11:1–19. https://doi.org/10.1038/s41598-021-01008-9

    Article  CAS  Google Scholar 

  40. Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kshatriya R, Shelke P, Mali S, Yashwantrao G, Pratap A, Saha S (2021) Synthesis and evaluation of anticancer activity of pyrazolone appended triarylmethanes (TRAMs). ChemistrySelect 6:6230–6239. https://doi.org/10.1002/slct.202101083

    Article  CAS  Google Scholar 

  42. Mvondo JGM, Matondo A, Mawete DT, Bambi S-MN, Mbala BM, Lohohola PO (2021) In silico ADME/T properties of quinine derivatives using SwissADME and pkCSM webservers. Int J Trop Dis Health 42:1–12. https://doi.org/10.9734/ijtdh/2021/v42i1130492

    Article  Google Scholar 

  43. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  44. Desale VJ, Mali SN, Thorat BR, Yamgar RS (2021) Synthesis, admetSAR predictions, DPPH radical scavenging activity, and potent anti-mycobacterial studies of hydrazones of substituted 4-(anilino methyl) benzohydrazides (Part 2). Curr Comput Aided Drug Des 17:493–503. https://doi.org/10.2174/1573409916666200615141047

    Article  CAS  PubMed  Google Scholar 

  45. Van Aalten DM, Bywater R, Findlay JB, Hendlich M, Hooft RW, Vriend G (1996) PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J Comput Aided Mol Des 10:255–262. https://doi.org/10.1007/BF00355047

    Article  PubMed  Google Scholar 

  46. Rajeshkumar RR, Kumar BK, Parasuraman P, Panneerselvam T, Sundar K, Ammunje DN, Pandian SRK, Murugesan S, Kabilan SJ, Kunjiappan S (2022) Graph theoretical network analysis, in silico exploration, and validation of bioactive compounds from Cynodon dactylon as potential neuroprotective agents against α-synuclein. BioImpacts 12:487–499. https://doi.org/10.34172/bi.2022.24113

    Article  PubMed  PubMed Central  Google Scholar 

  47. Palanichamy C, Pavadai P, Panneerselvam T, Arunachalam S, Babkiewicz E, Ram Kumar Pandian S, ShanmugampillaiJeyarajaguru K, NayakAmmunje D, Kannan S, Chandrasekaran J (2022) Aphrodisiac performance of bioactive compounds from Mimosa pudica Linn: in silico molecular docking and dynamics simulation approach. Molecules 27:3799. https://doi.org/10.3390/molecules27123799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India, for providing essential facilities to perform the research work, and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, for providing computational facility for research work.

Funding

Funding acquisition from Department of Biotechnology, Kalasalingam Academy of Research and Education, India.

Author information

Authors and Affiliations

Authors

Contributions

Shanmugampillai Jeyarajaguru Kabilan: conceptualization, reviewing and editing, resources, and supervision.

Selvaraj Kunjiappan: simulations, data collection, analysis, and writing—original draft preparation.

Krishnan Sundar: reviewing and editing, resources, and formal analysis.

Parasuraman Pavadai: simulations, data collection, analysis, and writing—original draft preparation.

Nivethitha Sathishkumar: material preparation, data collection, analysis, and writing—original draft preparation.

Haritha Velayuthaperumal: material preparation, data collection, analysis, and writing—original draft preparation.

Corresponding author

Correspondence to Shanmugampillai Jeyarajaguru Kabilan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

We approved all ethics.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabilan, S.J., Kunjiappan, S., Sundar, K. et al. Pharmacoinformatics-based screening of active compounds from Vitex negundo against lymphatic filariasis by targeting asparaginyl-tRNA synthetase. J Mol Model 29, 87 (2023). https://doi.org/10.1007/s00894-023-05488-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05488-6

Keywords

Navigation