Skip to main content
Log in

A comparable DFT study on reaction of CHCl•− with O3 and S2O

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

In this discussion, we began building two model, S2O + CHCl•− and O3 + CHCl•−, using DFT-BHandHLYP method, to study their reactions mechanisms on singlet PES. For this purpose, we hope to explore the effects of the difference between sulfur and oxygen atoms on the CHCl•− anion. Experimentalists and computer scientists may utilize the collected data to generate a wide range of hypotheses for experimental phenomena and predictions, allowing them to realize their full potential.

Methods

The ion-molecule reaction mechanism of CHCl•− with S2O and O3 was studied using the DFT-BHandHLYP level of theory with the aug-cc-pVDZ basis set. Our theoretical findings show that Path 6 is the favored reaction pathway for CHCl•− + O3 reaction as identified by the O-abstraction reaction pattern. Comparing to the direct H- and Cl-abstraction mechanisms, the reaction (CHCl•− + S2O) prefers the intramolecular SN2 reaction pattern. Moreover, the calculated results demonstrated that the CHCl•− + S2O reaction is thermodynamically more favorable than the CHCl•− + O3 reaction, which is kinetically more advantageous. As a result, if the required reaction condition in the atmospheric process is met, the Oreaction will happen more effectively. In terms of kinetics and thermodynamics viewpoints, the CHCl•− anion was very effective in eliminating S2O and O3.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Peiró-Garcı́a J, Nebot-Gil I (2004) An ab initio study on the mechanism of the F + O3 → FO + O2 reaction: comparative reactivity study along the isoelectronic NH2, OH and F radicals series. Chem Phys Lett 391:195–199

    Google Scholar 

  2. Zhang J, Miau TT, Lee YT (1997) Crossed molecular beam study of the reaction Br + O3. J Phys Chem A 101:6922–6930

    CAS  Google Scholar 

  3. Kalinowski J, Räsänen M, Gerber RB (2012) Mechanism and electronic transition in the Cl + O3 → ClO + O2 reaction: On the fly dynamics simulations with multi-reference potentials. Chem Phys Lett 535:44–48

    CAS  Google Scholar 

  4. Tiwari AJ, Morris JR, Vejerano Jr EP, Hochella MF, Marr LC (2014) Oxidation of C60 aerosols by atmospherically relevant levels of O3. Environ Sci Technol 48:2706–2714

    CAS  PubMed  Google Scholar 

  5. Han Z, Wang J, Zou T, Zhao D, Gao C, Dong J, Pan X (2020) NOx removal from flue gas using an ozone advanced oxidation process with injection of low concentration of ethanol: performance and mechanism. Energy Fuels 34:2080–2088

    CAS  Google Scholar 

  6. Yang Y, Liu H (2022) The mechanisms of ozonation for ammonia nitrogen removal: an indirect process. J Environ 10:108525

    CAS  Google Scholar 

  7. Machniewski P, Biń A, Kłosek K (2021) Effectiveness of toluene mineralization by gas-phase oxidation over Co(II)/SiO2 catalyst with ozone. Environ 42:3987–3994

    CAS  Google Scholar 

  8. Yu H, Ge P, Chen J, Xie H, Luo Y (2017) The degradation mechanism of sulfamethoxazole under ozonation: a DFT study. Environ Sci-Proc Imp 19:379–387

    CAS  Google Scholar 

  9. Sun J, Cao H, Zhang S, Li X, He M (2016) Theoretical study on the mechanism of the gas phase reaction of methoxybenzene with ozone. RSC Adv 6:113561–113569

    CAS  Google Scholar 

  10. Ataei-Pirkooh A, Alavi A, Kianirad M, Bagherzadeh K, Ghasempour A, Pourdakan O, Adl R, Kiani SJ, Mirzaei M, Mehravi B (2021) Hemispherical asymmetry of the lower stratospheric O3 response to galactic cosmic rays forcing. Sci Rep 11:1–10

    Google Scholar 

  11. Wang N, Wei F, Sun J, Wei B, Mei Q, An Z, Li M, Qiu Z, Bo X, Xie J, Zhan J, He M (2021) Destruction mechanisms of ozone over SARS-CoV-2. Chemosphere 281:130996

    CAS  PubMed  Google Scholar 

  12. Zhao Y, Kuang J, Zhang S, Li X, Wang B, Huang J, Deng S, Wang Y, Yua G (2017) Atmospheric ozonolysis of crotonaldehyde in the absence and presence of hydroxylated silica oligomer cluster adsorption. J Hazard 323:460–470

    CAS  Google Scholar 

  13. Kilifarska NA (2017) Ozonation of indomethacin: kinetics, mechanisms and toxicity. ACS Earth Space Chem 1:80–88

    CAS  Google Scholar 

  14. Liu J, Li X, Tan Z, Wang W, Yang Y, Zhu Y, Yang S, Song M, Chen S, Wang H, Lu K, Zeng L, Zhang Y (2021) Assessing the ratios of formaldehyde and glyoxal to NO2 as indicators of O3–NOX–VOC sensitivity. Environ Sci Technol 55:10935–10945

    CAS  Google Scholar 

  15. Goodarzi M, Vahedpour M, Nazari F (2010) Theoretical study of reaction mechanism for Se + O3. Struct Chem 21:915–922

    CAS  Google Scholar 

  16. Kayanuma M, Choe YK, Hagiwara T, Kameda N, Shimoi Y (2021) Theoretical study of the mechanism for the reaction of trimethylaluminum with ozone. ACS Omega 6:26282–26292

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tachikawa H, Abe S (2003) Ozone-water 1: 1 complexes O3-H2O: an ab initio study. Inorg Chem 42:2188–2190

    CAS  PubMed  Google Scholar 

  18. Castle KJ, Black LA, Pedersen TJ (2014) Vibrational relaxation of O3 (ν2) by O (3P). J Phys Chem A 118:4548–4553

    CAS  PubMed  Google Scholar 

  19. Maranzana A, Tonachini G (2020) Multireference study of the H2COO (Criegee Intermediate) + O3 addition: A reaction of possible tropospheric interest. J Phys Chem A 124:1112–1120

    CAS  PubMed  Google Scholar 

  20. Lim S, McArdell CS, von Gunten U (2019) Reactions of aliphatic amines with ozone: kinetics and mechanisms. Water Res 157:514–528

    CAS  PubMed  Google Scholar 

  21. Wang X, Sun J, Han D, Baob L, Meib Q, Wei B, An Z, He M, Yuana S, Xie J, Zhan J, Zhang Q, Wang W (2020) Gaseous and heterogeneous reactions of low-molecular-weight (LMW) unsaturated ketones with O3: mechanisms, kinetics, and effects of mineral dust in tropospheric chemical processes. Chem Eng Sci 395(1):25083

    Google Scholar 

  22. Subbotin OS, Bozhko Y, Zhdanov RK, Gets KV, Belosludov VR, Belosludov RV, Kawazoe Y (2018) Ozone storage capacity in clathrate hydrates formed by O3 + O2 + N2 + CO2 gas mixtures. Phys Chem Phys 20:12637–12641

    CAS  Google Scholar 

  23. Hatsugai T, Kiyokawa H, Takeya S, Ohmura R (2021) Improved operation of continuous ozone hydrate production. Chem Eng Technol 44:1677–1685

    CAS  Google Scholar 

  24. Wang H, Huang Z, Jiang Z, Jiang Z, Zhang Y, Zhang Z, Shangguan W (2018) Trifunctional C@MnO catalyst for enhanced stable simultaneously catalytic removal of formaldehyde and ozone. ACS Catal 8:3164–3180

    CAS  Google Scholar 

  25. Wan X, Wang L, Zhang S, Shi H, Niu J, Wang G, Li W, Chen D, Zhang H, Zhou X, Wang W (2022) Ozone decomposition below room temperature using Mn-based mullite YMn2O5. Environ Sci Technol 56:8746–8755

    CAS  PubMed  Google Scholar 

  26. Liang J, Wei Y, Li Y, Qiang Z, Geng Z (2014) Reaction of CS2 with CHBr•- and CBr2•- in the gas phase: a theoretical mechanistic study. J Iran Chem Soc 11:1345–1352

    CAS  Google Scholar 

  27. Feng E, Yu ZJ, Jiang H, Ma X, Nash J (2022) Gas-phase reactivity of phenylcarbyne anions. J Am Chem Soc 144:8576–8590

    CAS  PubMed  Google Scholar 

  28. Zolotov MY, Fegley BJ (1998) Volcanic origin of disulfur monoxide (S2O) on Io. Icarus 133:293–297

    CAS  Google Scholar 

  29. Navizet I, Komiha N, Linguerri R, Chambaud G, Rosmus P (2010) On the formation of S2O at low energies: an ab initio study. Chem Phys Lett 500:207–210

    CAS  Google Scholar 

  30. Navizet I, Komiha N, Linguerri R, Chambaud G, Rosmus P (2004) Reversible disulfur monoxide (S2O)-forming Retro-Diels-Alder reaction. Disproportionation of S2O to trithio-ozone (S3) and sulfur dioxide (SO2) and reactivities of S2O and S3. J Am Chem Soc 126:9085–9093

    Google Scholar 

  31. Petris G, Troiani A, Angelini G, Ursini O, Bottoni A, Calvaresi M (2007) Isotope exchange in disulfur monoxide-water charged complexes: a mass spectrometric and computational study. J AM SOC MASS SPECTR 18:1664–1671

    Google Scholar 

  32. Sandhiya L, Kolandaivel P, Senthilkumar K (2012) Mechanism and kinetics of the reaction of 1, 4-thioxane with O3 in the atmosphere: a theoretical study. Chem Phys Lett 525:153–159

    Google Scholar 

  33. Liang J, Zhang F, Qi B, Jia W, Liu H, Su Q (2022) Reaction of CHCl•− with HCHO and H2O: A theoretical study. Comput Theor Chem 1217:113932

    CAS  Google Scholar 

  34. Goodarzi M, Vahedpour M (2012) Computational study on the multi-channel mechanism of disulfur and ozone reaction. Struct Chem 23:1599–1607

    CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Jr Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. (2003) Gaussian 03, Revision B. 03, Gaussian, Inc., Pittsburgh (PA)

  36. Woon DE, Dunning TH (1993) Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys 98:1358–1371

    CAS  Google Scholar 

  37. Mejia-Rodriguez D, Kunitsa A, Apra E, Govind N (2022) Basis set selection for molecular core-level gw calculations. J Chem Theory Comput 18:4919–4926

    CAS  PubMed  Google Scholar 

  38. Filatov M, Lee S, Nakata H, Choi CH (2020) Computation of molecular electron affinities using an ensemble density functional theory method. J Phys Chem A 124:7795–7804

    CAS  PubMed  Google Scholar 

  39. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  40. Peng C, Bernhard Schlegel H (1993) Combining synchronous transit and quasi-newton methods to find transition states. Isr J Chem 33:449–454

    CAS  Google Scholar 

  41. Hratchian HP, Frisch MJ, Schlegel HB (2010) Steepest descent reaction path integration using a first-order predictor-corrector method. J Chem Phys 133:224101

    PubMed  Google Scholar 

  42. Tsutsumi T, Ono Y, Arai Z, Taketsugu T (2018) Visualization of the intrinsic reaction coordinate and global reaction route map by classical multidimensional scaling. J Chem Theory Comput 14:4263–4270

    CAS  PubMed  Google Scholar 

  43. Chachiyo T, Chachiyo H (2020) Understanding electron correlation energy through density functional theory. Comput Theor Chem 1172:112669

    CAS  Google Scholar 

  44. Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–5975

    CAS  Google Scholar 

  45. Ahmadinejad N, Talebi Trai M (2019) Computational NQR−NBO parameters and DFT calculations of ampicillin and zwitterion (monomer and dimer structures). Chem Methodol 3:55–66

    CAS  Google Scholar 

  46. Glendening ED, Landis CR, Weinhold F (2012) Pauling’s conceptions of hybridization and resonance in modern quantum chemistry. WIREs Comput Mol Sci 2:1–42

    CAS  Google Scholar 

  47. Han H, Suo B, Jiang Z, Wang Y, Wen Z (2008) The potential energy curves of low-lying electronic states of S2O. J Chem Phys 128:184312

    PubMed  Google Scholar 

  48. Dias N, Gurusinghe RM, Suits AG (2022) Multichannel radical-radical reaction dynamics of NO+ propargyl probed by broadband rotational spectroscopy. J Phys Chem A 126:5354–5362

    CAS  PubMed  Google Scholar 

  49. Liu JY, Long ZW, Mitchell E, Long B (2021) New mechanistic pathways for the reactions of formaldehyde with formic acid catalyzed by sulfuric acid and formaldehyde with sulfuric acid catalyzed by formic acid: formation of potential secondary organic aerosol precursors. ACS Earth Space Chem 5:1363–1372

    CAS  Google Scholar 

  50. Peiró-García J, Nebot-Gil I (2002) Ab initio study of the mechanism and thermochemistry of the atmospheric reaction NO + O3 → NO2 + O2. J Phys Chem A 106:10302–10310

    Google Scholar 

  51. Nguyen TH, Nguyen TN, Vu GHT, Nguyen HMT (2022) A quantum chemical investigation of the mechanisms and kinetics of the reactions between methyl radical and n/i-propanol. Comput Theor Chem 1210:113638

    Google Scholar 

  52. Xia W, Zhang R, Xu X, Ma P, Ma C (2022) Spectroscopic features and electronic properties on tetrazole-based energetic cocrystals under external electric field. Comput Theor Chem 1214:113802

    CAS  Google Scholar 

  53. Bhujel M, Marshall D, Maccarone A, McKinnon BI, Trevitt A, Silva G, Blanksby S, Poad B (2020) Gas phase reactions of iodide and bromide anions with ozone: evidence for stepwise and reversible reactions. Phys Chem Chem Phys 22:9982–9989

    CAS  PubMed  Google Scholar 

  54. DePuy CH (2002) Understanding organic gas-phase anion molecule reactions. J Org Chem 67:2393–2401

    CAS  PubMed  Google Scholar 

Download references

Funding

Project supported: Fundamental Research Funds for the Central Universities (31920220063), the National Natural Science Foundation of China (21968032, 22165025, and 22262031), Chemistry Discipline Innovation Team of Northwest Minzu University (1110130139 and 1110130141).

Author information

Authors and Affiliations

Authors

Contributions

Liang Junxi: conceptualization, methodology, and funding acquisition. Zhang Fupeng: validation, formal analysis, and writing original draft. Qi Bomiao: visualization. Lu Mengmeng: funding acquisition and project administration. Pang Shaofeng: data curation. Wang Yanbin: writing review and editing. Su Qiong: project administration.

Corresponding authors

Correspondence to Liang Junxi or Su Qiong.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fupeng, Z., Junxi, L., Bomiao, Q. et al. A comparable DFT study on reaction of CHCl•− with O3 and S2O. J Mol Model 29, 85 (2023). https://doi.org/10.1007/s00894-023-05483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05483-x

Keywords

Navigation