Skip to main content
Log in

Computational evaluation of transport parameters and logic circuit designing of L-Lysine amino acid stringed to Au, Ag, Cu, Pt, and Pd electrodes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The integrants of proteins, i.e., amino acids, have grossed exceptional recognition for their applications towards designing imminent switching devices. Among 20 amino acids, L-Lysine (i.e., positively charged) has the highest number of CH2 chains, and such chains affect the rectification ratio in several biomolecules. Towards molecular rectification, we investigate the transport parameters of L-Lysine in conjunction with five different coinage metal electrodes, i.e., Au, Ag, Cu, Pt and Pd to form five distinct devices. We deputize the NEGF-DFT formulism for computing conductance, frontier molecular orbitals, current–voltage, and molecular projected self-Hamiltonian calculations using a self-consistent function. We focus on the most widely used electron exchange correlation combination, i.e., the PBE version of GGA with DZDP basis set. The molecular devices under inquisition exhibit phenomenal rectification ratios (RR) in conjunction with negative differential resistance (NDR) regimes. The nominated molecular device offers a substantial rectification ratio of 45.6 with platinum electrodes and a prominent peak to valley current ratio of 1.78 with copper electrodes. We deduce from these findings that L-Lysine based molecular devices would implicit in future bio-nanoelectronic devices. The OR and AND logic gates are also proposed hinged on highest rectification ratio of L-Lysine-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All the data generated or analysed during this study are included in this manuscript.

References

  1. Amdursky N, Marchak D, Sepunaru L, Pecht I, Sheves M, Cahen D (2014) Electronic transport via proteins. Adv Mater 26(42):7142–7161. https://doi.org/10.1002/ADMA.201402304

    Article  CAS  PubMed  Google Scholar 

  2. Alessandrini A, Facci P (2016) Electron transfer in nanobiodevices. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2016.03.028

    Article  Google Scholar 

  3. Lebedev N, Griva I, Blom A, Tender LM (2018) Effect of iron doping on protein molecular conductance. Phys Chem Chem Phys 20(20):14072–14081. https://doi.org/10.1039/C8CP00656C

    Article  CAS  PubMed  Google Scholar 

  4. Bixon M, Jortner J (2007) Electron transfer-from isolated molecules to biomolecules. Adv Chem Phys 35–202. https://doi.org/10.1002/9780470141656.ch3

  5. Talebi S, Daraghma SMA, Subramaniam RT, Bhassu S, Gnana Kumar G, Periasamy V (2020) “Printed-circuit-board-based two-electrode system for electronic characterization of proteins. ACS Omega 5(14):7802–7808. https://doi.org/10.1021/ACSOMEGA.9B03831/ASSET/IMAGES/LARGE/AO9B03831_0003.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ron I et al (2010) Proteins as electronic materials: electron transport through solid-state protein monolayer junctions. J Am Chem Soc 132(12):4131–4140. https://doi.org/10.1021/ja907328r

    Article  CAS  PubMed  Google Scholar 

  7. Bostick CD, Mukhopadhyay S, Pecht I, Sheves M, Cahen D, Lederman D (2018) Protein bioelectronics: a review of what we do and do not know. Rep Prog Phys 81(2):1–158. https://doi.org/10.1088/1361-6633/aa85f2

    Article  CAS  Google Scholar 

  8. Ruiz MP et al (2017) Bioengineering a single-protein junction. J Am Chem Soc 139(43):15337–15346. https://doi.org/10.1021/JACS.7B06130/SUPPL_FILE/JA7B06130_SI_002.MPG

    Article  CAS  PubMed  Google Scholar 

  9. Evers F, Korytár R, Tewari S, van Ruitenbeek JM (2020) “Advances and challenges in single-molecule electron transport. Rev Mod Phys 92(3):035001. https://doi.org/10.1103/REVMODPHYS.92.035001/FIGURES/35/MEDIUM

    Article  CAS  Google Scholar 

  10. Nagamune T (2017) Biomolecular engineering for nanobio/bionanotechnology. Nano Convergence 4(9):1–56. https://doi.org/10.1186/s40580-017-0103-4

  11. Cuevas JC, Scheer E (2017) The birth of molecular electronics. Molecular Electronics: An Introduction to Theory and Experiment 3–18. https://doi.org/10.1142/9789813226036_0001

  12. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F (2019) The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules 25(1):112. https://doi.org/10.3390/MOLECULES25010112

  13. Zotti LA et al (2019) Can one define the conductance of amino acids?. Biomolecules 9(10):580. https://doi.org/10.3390/BIOM9100580

  14. Ganji MD (2009) Density functional theory based treatment of amino acids adsorption on single-walled carbon nanotubes. Diam Relat Mater. https://doi.org/10.1016/j.diamond.2008.11.021

    Article  Google Scholar 

  15. Li WQ et al (2017) Detecting electron transport of amino acids by using conductance measurement. Sensors (Switzerland). https://doi.org/10.3390/s17040811

    Article  PubMed Central  Google Scholar 

  16. Zhao Y et al (2014) Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat Nanotechnol. https://doi.org/10.1038/nnano.2014.54

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shah A et al (2015) Electron transfer in peptides. Chem Soc Rev. https://doi.org/10.1039/c4cs00297k

    Article  PubMed  Google Scholar 

  18. Sikri G, Sawhney RS (2022) Dipeptide constituting oppositely charged amino acids as molecular rectifier. 2022 IEEE Global  Conference on Computing, Power and Communication Technologies (GlobConPT) 1–5. https://doi.org/10.1109/GlobConPT57482.2022.9938256

  19. Zotti LA, Cuevas JC (2018) Electron transport through homopeptides: are they really good conductors? ACS Omega 3(4):3778–3785. https://doi.org/10.1021/acsomega.7b01917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Minoura N (1998) Nonlinear resistance behavior of current-voltage characteristics in polypeptide membranes with conformational transition. Langmuir. https://doi.org/10.1021/la970666f

    Article  Google Scholar 

  21. Panda SS, Katz HE, Tovar JD (2018) Solid-state electrical applications of protein and peptide based nanomaterials. Chem Soc Rev 47(10):3640–3658. https://doi.org/10.1039/c7cs00817a

    Article  CAS  PubMed  Google Scholar 

  22. Kala CP, Thiruvadigal DJ (2018) First-principles study of electron transport in azulene molecular junction: effect of electrode material on electrical rectification behavior. J Comput Electron 17(2):580–585. https://doi.org/10.1007/S10825-018-1130-Z

    Article  CAS  Google Scholar 

  23. Parashar S, Srivastava P, Pattanaik M (2013) “Electrode materials for biphenyl-based rectification devices. J Mole Model 19(10):4467–4475. https://doi.org/10.1007/S00894-013-1938-1

    Article  CAS  Google Scholar 

  24. Parashar S, Srivastava P, Pattanaik M, Jain SK (2014) Electron transport in asymmetric biphenyl molecular junctions: effects of  conformation and molecule-electrode distance. Eur Phys J Plus B 87(9):220. https://doi.org/10.1140/epjb/e2014-50133-2

  25. Parashar S, Srivastava P (2016) A novel reverse rectifying effects and negative differential resistance in asymmetric X-biphenyl-X (X=Pt, Pd, Pb) molecular junctions. Solid State Commun 231–232:10–13. https://doi.org/10.1016/J.SSC.2016.01.019

    Article  Google Scholar 

  26. Meng FX, Ming C, Zhuang J, Ning XJ (2013) Dependence of electronic rectification in carbon nanocone devices upon electrode materials.  J Phys D Appl Phys 46(5):055309. https://doi.org/10.1088/0022-3727/46/5/055309

  27. Sikri G, Sawhney RS (2021) Molecular electronics behaviour of L-aspartic acid using symmetrical metal electrodes. J Mol Model 27(11):335. https://doi.org/10.1007/S00894-021-04936-5

  28. Sikri G, Sawhney RS (2020) First principle approach to elucidate transport properties through l-glutamic acid-based molecular devices  using symmetrical electrodes. J Mol Model 26:1–11. https://doi.org/10.1007/s00894-020-4323-x

  29. Lin GM et al (2019) Effect of the chemical potentials of electrodes on charge transport across molecular junctions. J Phys Chem C 123(36):22009–22017. https://doi.org/10.1021/ACS.JPCC.9B05927/SUPPL_FILE/JP9B05927_SI_001.PDF

    Article  CAS  Google Scholar 

  30. Xie Z, Bâldea I, Frisbie CD (2019) Determination of energy-level alignment in molecular tunnel junctions by transport and spectroscopy: self-consistency for the case of oligophenylene thiols and dithiols on Ag, Au, and Pt Electrodes. J Am Chem Soc 141(8):3670–3681. https://doi.org/10.1021/JACS.8B13370/SUPPL_FILE/JA8B13370_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  31. Wang K, Xu B (2017) Modulation and control of charge transport through single-molecule junctions. Top Curr Chem 375(1):1–43. https://doi.org/10.1007/s41061-017-0105-z

    Article  CAS  Google Scholar 

  32. Kiguchi M, Miura S, Takahashi T, Hara K, Sawamura M, Murakoshi K (2008) Conductance of single 1,4-benzenediamine molecule bridging between Au and Pt electrodes. J Phys Chem C 112(35):13349–13352. https://doi.org/10.1021/JP806129U/ASSET/IMAGES/MEDIUM/JP-2008-06129U_0001.GIF

    Article  CAS  Google Scholar 

  33. Silva CE, Pontes RB (2020) Structural, electronic and transport properties of a single 1,4-benzenediamine molecule attached to metal contacts of Au, Ag and Cu. Comput Mater Sci 171:109212. https://doi.org/10.1016/J.COMMATSCI.2019.109212

    Article  CAS  Google Scholar 

  34. M. Kaur, R. S. Sawhney, and D. Engles (2018) Negative differential resistance observation in complex convoluted fullerene junctions. J  Appl Phys, 123(16):161511. https://doi.org/10.1063/1.4985796

  35. Larade B, Bratkovsky AM (2003) Current rectification by simple molecular quantum dots: an ab initio study. Phys Rev B Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.68.235305

    Article  Google Scholar 

  36. Zhou YH, Zheng XH, Xu Y, Zeng ZY (2006) Current rectification by asymmetric molecules: an ab initio study. J Chem Phys 125(24):244701. https://doi.org/10.1063/1.2409689

    Article  CAS  PubMed  Google Scholar 

  37. Welker ME (2018) Ferrocenes as building blocks in molecular rectifiers and diodes. Molecules 23(7):1551. https://doi.org/10.3390/MOLECULES23071551

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sikri G, Singh Sawhney R, Rajni (2022) L-Aspartic acid based molecular rectifier using dissimilar electrodes. Mater Today Proc 71(2):408–413. https://doi.org/10.1016/j.matpr.2022.10.001

  39. Berdiyorov GR, Hamoudi H (2021) Effect of anchoring groups on the electronic transport properties of biphenyl and phenyl-pyridine molecules. J Market Res 12:193–201. https://doi.org/10.1016/J.JMRT.2021.02.078

    Article  CAS  Google Scholar 

  40. Kokabi A, Touski SB, Mamdouh A (2021) Negative differential resistance, rectification, tunable peak-current position and switching effects  in an alanine-based molecular device. J Med Engg & Tech 45(7):505–510. https://doi.org/10.1080/03091902.2020.1775904

  41. Oliveira JIN, Albuquerque EL, Fulco UL, Mauriz PW, Sarmento RG (2014) Electronic transport through oligopeptide chains: an artificial prototype of a molecular diode. Chem Phys Lett 612:14–19. https://doi.org/10.1016/j.cplett.2014.07.062

    Article  CAS  Google Scholar 

  42. De Ferra F, Rodriguez F, Tortora O, Tosi C, Grandi G (1997) “Engineering of peptide synthetases. Key role of the thioesterase-like domain for efficient production of recombinant peptides. J Biol Chem. https://doi.org/10.1074/jbc.272.40.25304

    Article  PubMed  Google Scholar 

  43. Rutherfurd SM, Rutherfurd-Markwick KJ, Moughan PJ (2007) Available (ileal digestible reactive) lysine in selected pet foods. J Agric Food Chem 55(9):3517–3522. https://doi.org/10.1021/jf062919t

    Article  CAS  PubMed  Google Scholar 

  44. Anastassiadis S (2008) L-Lysine fermentation. Recent Pat Biotechnol 1(1):11–24. https://doi.org/10.2174/187220807779813947

    Article  Google Scholar 

  45. Abbasov ME et al (2021) 2021 “A proteome-wide atlas of lysine-reactive chemistry.” Nat Chem 13:111081–1092. https://doi.org/10.1038/s41557-021-00765-4

    Article  CAS  Google Scholar 

  46. Banerjee A, Lee A, Campbell E, MacKinnon R (2013) Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent  K+ channel. Elife 2:e00594. https://doi.org/10.7554/eLife.00594.001

  47. Park SY et al (2017) Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. J Ind Eng Chem 47:329–335. https://doi.org/10.1016/j.jiec.2016.12.002

    Article  CAS  Google Scholar 

  48. Ali M, Ramirez P, Mafé S, Neumann R, Ensinger W (2009) A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 3(3):603–608. https://doi.org/10.1021/nn900039f

    Article  CAS  PubMed  Google Scholar 

  49. Li J et al (2020) Bioinspired dual-responsive nanofluidic diodes by poly- l -lysine modification. ACS Omega 5(9):4501–4506. https://doi.org/10.1021/acsomega.9b03850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Natori K (2015) Nonideality of drain electrode and ballistic performance of MOSFET. Jpn J Appl Phys. https://doi.org/10.7567/JJAP.54.044102

    Article  Google Scholar 

  51. Landauer R (2010) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev. https://doi.org/10.1147/rd.13.0223

    Article  Google Scholar 

  52. Pauling L (2002) Atomic radii and interatomic distances in metals. J Am Chem Soc 69(3):542–553. https://doi.org/10.1021/JA01195A024

    Article  Google Scholar 

  53. Xiang D, Jeong H, Lee T, Mayer D (2013) Mechanically controllable break junctions for molecular electronics. Adv Mater 25(35):4845–4867. https://doi.org/10.1002/ADMA.201301589

    Article  CAS  PubMed  Google Scholar 

  54. Hamill J, Wang K, Xu B, (2014) Characterizing molecular junctions through the mechanically controlled break-junction approach. Reports In Electrochemistry 4:1–11. https://doi.org/10.2147/RIE.S46629

  55. Kaur M, Sawhney RS, Engles D (2018) Ab initio scrutiny of endohedral C20 fullerenes implanted in between gold electrodes. J Mol Model 24(4):1–13. https://doi.org/10.1007/S00894-018-3594-Y/METRICS

    Article  Google Scholar 

  56. Böhler T, Grebing J, Mayer-Gindner A, Löhneysen HV, Scheer E (2004) Mechanically controllable break-junctions for use as electrodes for molecular electronics. Nanotechnology. https://doi.org/10.1088/0957-4484/15/7/054

    Article  Google Scholar 

  57. Burke K (2016) Improving electronic structure calculations. Physics 9:108. https://doi.org/10.1103/physics.9.108

  58. Van Mourik T, Bühl M, Gaigeot MP (2014) Density functional theory across chemistry, physics and biology. Philos Trans Royal Society A  72(2011). https://doi.org/10.1098/rsta.2012.0488

  59. Smidstrup S et al (2020) QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J Phys: Condens Matter 32:15901

    CAS  Google Scholar 

  60. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  61. Xu X, Goddard WA (2004) The extended Perdew-Burke-Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems. J Chem Phys 121(9):4068. https://doi.org/10.1063/1.1771632

    Article  CAS  PubMed  Google Scholar 

  62. Kaschner R, Hohl D (1998) Density functional theory and biomolecules: a study of glycine, alanine, and their oligopeptides. J Phys Chem A. https://doi.org/10.1021/jp980975u

    Article  Google Scholar 

  63. Saffari M, Mohebpour MA, RahimpourSoleimani H, BagheriTagani M (2017) DFT analysis and FDTD simulation of CH3NH3PbI3-xClx mixed halide perovskite solar cells: role of halide mixing and light trapping technique. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/aa83c8

    Article  Google Scholar 

  64. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43(3):1993. https://doi.org/10.1103/PhysRevB.43.1993

    Article  CAS  Google Scholar 

  65. Van Wees BJ et al (1988) Quantized conductance of point contacts in a two-dimensional electron gas. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.60.848

    Article  Google Scholar 

  66. Kiguchi M, Miura S, Hara K, Sawamura M, Murakoshi K (2007) Conductance of single 1,4-disubstituted benzene molecules anchored to Pt electrodes. Appl Phys Lett 91(5):053110. https://doi.org/10.1063/1.2757592

    Article  CAS  Google Scholar 

  67. Mahmoud A, Lugli P (2013) First-principles study of a novel molecular rectifier. IEEE Trans Nanotechnol 12(5):719–724. https://doi.org/10.1109/TNANO.2013.2271453

    Article  CAS  Google Scholar 

  68. Strange M, Rostgaard C, Häkkinen H, Thygesen KS (2011) Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions. Phys Rev B Condens Matter Mater Phys 83(11):115108. https://doi.org/10.1103/PHYSREVB.83.115108/FIGURES/8/MEDIUM

    Article  Google Scholar 

  69. Perrin ML et al (2013) Large tunable image-charge effects in single-molecule junctions. Nature Nanotechnology 8(4):282–287. https://doi.org/10.1038/nnano.2013.26

    Article  PubMed  Google Scholar 

  70. Stadler R (2010) Conformation dependence of charge transfer and level alignment in nitrobenzene junctions with pyridyl anchor groups.  Phys Rev B 81(16). https://doi.org/10.1103/physrevb.81.165429

  71. Bttiker M, Imry Y, Landauer R, Pinhas S (1985) Generalized many-channel conductance formula with application to small rings. Phys Rev B 31(10):6207–6215. https://doi.org/10.1103/PhysRevB.31.6207

    Article  Google Scholar 

  72. Xie Z, Bâldea I, Frisbie CD (2018) Why one can expect large rectification in molecular junctions based on alkane monothiols and why rectification is so modest. Chem Sci 9(19):4456–4467. https://doi.org/10.1039/C8SC00938D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Qiu M, Liew KM (2011) Deformation effects of multi-functional monatomic carbon ring device. Phys Lett, Sect A: General, Atomic Solid State Phys 375(23):2234–2238. https://doi.org/10.1016/j.physleta.2011.04.042

    Article  CAS  Google Scholar 

  74. Vohra R, Sawhney RS, Singh KP (2020) Contemplating charge transport by modeling of DNA nucleobases based nano structures. Curr Appl Phys 20(5):653–659. https://doi.org/10.1016/j.cap.2020.02.016

    Article  Google Scholar 

  75. Bingham RC (1976) The stereochemical consequences of electron delocalization in extended π systems. An interpretation of the ciseffect  exhibited by 1,2-disubstituted ethylenes and related phenomena. J Am Chem Soc 98(2):535–540. https://doi.org/10.1021/ja00418a036

  76. Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid-molecular and mono-molecular devices. Nature 408(6812):541–548. https://doi.org/10.1038/35046000

    Article  CAS  PubMed  Google Scholar 

  77. Cholet S, Joachim C, Martinez JP, Rousset B (1999) Fabrication of co-planar metal-insulator-metal solid state nanojunctions down to 5 nm. Eur Phys J Appl Phys 8(2):139–145. https://doi.org/10.1051/EPJAP:1999239

    Article  CAS  Google Scholar 

  78. Goldhaber-Gordon D, Montemerlo MS, Love JC, Opiteck GJ, Ellenbogen JC (1997) Overview of nanoelectronic devices. Proc IEEE 85(4):521–540. https://doi.org/10.1109/5.573739

    Article  CAS  Google Scholar 

  79. Ellenbogen JC, Christopher Love J (2000) Architectures for molecular electronic computers: 1. Logic structures and an adder designed from molecular electronic diodes. Proceed IEEE 88(3):386–426. https://doi.org/10.1109/5.838115

    Article  CAS  Google Scholar 

  80. Cervera J, Ramirez P, Mafe S, Stroeve P (2011) Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochim Acta 56(12):4504–4511. https://doi.org/10.1016/J.ELECTACTA.2011.02.056

    Article  CAS  Google Scholar 

  81. Peng R et al (2020) Ionotronics based on horizontally aligned carbon nanotubes. Adv Funct Mater 30(38):2003177. https://doi.org/10.1002/ADFM.202003177

    Article  CAS  Google Scholar 

  82. Lee Y et al (2019) Flexible carbon nanotube Schottky diode and its integrated circuit applications. RSC Adv 9(38):22124–22128. https://doi.org/10.1039/C9RA02855B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vandarkuzhali SAA et al (2018) Pineapple peel-derived carbon dots: applications as sensor, molecular keypad lock, and memory device. ACS Omega 3(10):12584–12592. https://doi.org/10.1021/ACSOMEGA.8B01146/ASSET/IMAGES/LARGE/AO-2018-01146E_0010.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Han JH, Kim KB, Kim HC, Chung TD (2009) Ionic circuits based on polyelectrolyte diodes on a microchip. Angew Chem Int Ed Engl 48(21):3830–3833. https://doi.org/10.1002/ANIE.200900045

    Article  CAS  PubMed  Google Scholar 

  85. Vohra R, Sawhney RS (2022) A thymine-based molecular structure to design logic gates and memory devices. J Comput Electron 21(1):80–85. https://doi.org/10.1007/S10825-021-01820-6/METRICS

    Article  CAS  Google Scholar 

  86. Wang Y, Wang Z, Su Z, Cai S (2019) Stretchable and transparent ionic diode and logic gates. Extreme Mech Lett 28:81–86. https://doi.org/10.1016/J.EML.2019.03.001

    Article  Google Scholar 

  87. Huang Y, Duan X, Cui Y, Lauhon LJ, Kim KH, Lieber CM (2001) Logic gates and computation from assembled nanowire building blocks. Science (1979) 294(5545):1313–1317. https://doi.org/10.1126/SCIENCE.1066192

    Article  CAS  Google Scholar 

  88. Xin N et al (2019) Concepts in the design and engineering of single-molecule electronic devices. Nat Rev Phys 1(3):211–230. https://doi.org/10.1038/s42254-019-0022-x

    Article  Google Scholar 

  89. Tong B, Barbul A (2012) Cellular and physiological effects of arginine. Mini-Rev Med Chem 4(8):823–832. https://doi.org/10.2174/1389557043403305

    Article  Google Scholar 

  90. Kitamura M (1993) Crystallization behavior and transformation kinetics of L-histidine polymorphs. J Chem Eng Jpn 26(3):303–307. https://doi.org/10.1252/jcej.26.303

    Article  CAS  Google Scholar 

  91. Dancis J, Hutzler J, Cox RP, Woody NC (1969) Familial hyperlysinemia with lysine-ketoglutarate reductase insufficiency. J Clin Invest 48(8):1447–1452. https://doi.org/10.1172/JCI106110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, Löhneysen HV (2002) Driving current through single organic molecules. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.88.176804

    Article  PubMed  Google Scholar 

  93. Cahn RS, Ingold CK, Prelog V (1956) The specification of asymmetric configuration in organic chemistry. Experientia. https://doi.org/10.1007/BF02157171

    Article  Google Scholar 

  94. Dagar P, Bera J, Vyas G, Sahu S (2019) Bidirectional multiple negative differential resistance (BM-NDR): an interplay between interface resistance and redox reaction. Org Electron. https://doi.org/10.1016/j.orgel.2019.05.031

    Article  Google Scholar 

  95. Lörtscher E, Gotsmann B, Lee Y, Yu L, Rettner C, Riel H (2012) Transport properties of a single-molecule diode. ACS Nano 6(6):4931–4939. https://doi.org/10.1021/nn300438h

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Writing-original draft preparation: Gaurav Sikri;

Formal analysis and investigation, Writing-review and editing, Supervision: Ravinder Singh Sawhney.

Corresponding author

Correspondence to Gaurav Sikri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

All authors give consent for publication of this manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikri, G., Sawhney, R.S. Computational evaluation of transport parameters and logic circuit designing of L-Lysine amino acid stringed to Au, Ag, Cu, Pt, and Pd electrodes. J Mol Model 29, 115 (2023). https://doi.org/10.1007/s00894-023-05471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05471-1

Keywords

Navigation