Skip to main content
Log in

Intramolecular interactions (O-H∙∙∙O, C-H∙∙∙N, N-H∙∙∙π) in isomers of neutral, cation, and anion dopamine molecules: A DFT study on the influence of solvents (water and ethanol)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Dopamine (DA) is one of the most important neurotransmitters associated with numerous neural disorders. This investigation reports the intramolecular interactions present in the isomers of neutral (DA0), anionic (DA), and cationic (DA+) dopamine isomers in gas, water, and ethanol mediums. Neutral and anion isomers have O-H∙∙∙O, C-H∙∙∙N intramolecular hydrogen bonds and N-H∙∙∙π interactions. All the interactions are electrostatic in nature. Isomers of cation dopamine show no intramolecular interactions in the solvent. Natural charges from natural bond orbital (NBO) analysis show that O-H∙∙∙O bonds and the N-H∙∙∙π interactions are the most and least polar, respectively. 1H NMR study reveals the inverse linear correlation between shielding constant and electron density in a solvent medium. HOMO-LUMO energy gap indicates higher stability for neutral and cationic forms of dopamine isomers in water and ethanol medium.

Methods

We have optimized all the structural forms of dopamine molecule using the Becke three hybrid exchange and Lee-Yang-Parr correlation functional with Grimme’s dispersion correction, B3LYP-D3(BJ), and aug-cc-pVTZ basis set using the Gaussian16 software. Vibrational frequency analysis with no imaginary frequencies confirms the nature of global minima. The solvent studies (water and ethanol) were carried out using the SCRF keyword and the polarisable continuum model (PCM) of Miertus and Tomasi. NBO analysis and NMR studies were also performed for all conformers. Topology analysis was explored using the software Multiwfn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Niyonambaza SD et al (2019) A review of neurotransmitters sensing methods for neuro-engineering research. Appl Sci 9(21)

  2. Chauhan N et al (2020) Recent advancement in nanosensors for neurotransmitters detection: present and future perspective. Process Biochem 91:241–259

    Article  CAS  Google Scholar 

  3. Banerjee S et al (2020) Electrochemical detection of neurotransmitters. Biosensors 10(8):101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ortiz-Medina J et al (2015) Differential response of doped/defective graphene and dopamine to electric fields: a density functional theory study. J Phys Chem C 119(24):13972–13978

    Article  CAS  Google Scholar 

  5. Shen Y et al (2019) Treatment of magnesium-L-threonate elevates the magnesium level in the cerebrospinal fluid and attenuates motor deficits and dopamine neuron loss in a mouse model of Parkinson’s disease. Neuropsychiatr Dis Treat 15:3143–3153

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pande S et al (2009) Dopamine molecules on Aucore−Agshell bimetallic nanocolloids: Fourier transform infrared, Raman, and surface-enhanced Raman spectroscopy study aided by density functional theory. J Phys Chem C 113(17):6989–7002

    Article  CAS  Google Scholar 

  7. Musacchio JM (1975) Enzymes involved in the biosynthesis and degradation of catecholamines. In: Iversen LL, Iversen SD, Snyder SH (eds) Biochemistry of biogenic amines. Springer US, Boston, MA, pp 1–35

    Google Scholar 

  8. Cruickshank L, Kennedy AR, Shankland N (2013) Tautomeric and ionisation forms of dopamine and tyramine in the solid state. J Mol Struct 1051:132–136

    Article  CAS  Google Scholar 

  9. Ireta J, Neugebauer J, Scheffler M (2004) On the accuracy of DFT for describing hydrogen bonds: dependence on the bond directionality. J Phys Chem A 108(2004):5692–5698

    Article  CAS  Google Scholar 

  10. Fernández JA (2020) Exploring hydrogen bond in biological molecules. Journal of the Indian Institute of Science 100(1):135–154

    Article  Google Scholar 

  11. Wojtulewski S, Grabowski SJ (2003) DFT and AIM studies on two-ring resonance assisted hydrogen bonds. J Mol Struct THEOCHEM 621(3):285–291

    Article  CAS  Google Scholar 

  12. Efimov AV, Brazhnikov EV (2003) Relationship between intramolecular hydrogen bonding and solvent accessibility of side-chain donors and acceptors in proteins. FEBS Lett 554(3):389–393

    Article  CAS  PubMed  Google Scholar 

  13. Mallajosyula SS, MacKerell Jr AD (2011) Influence of solvent and intramolecular hydrogen bonding on the conformational properties of O-linked glycopeptides. J Phys Chem B 115(38):11215–11229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trendafilova N, Bauer G, Mihaylov T (2004) DFT and AIM studies of intramolecular hydrogen bonds in dicoumarols. Chem Phys 302(1):95–104

    Article  CAS  Google Scholar 

  15. Deshmukh MM, Bartolotti LJ, Gadre SR (2011) Intramolecular hydrogen bond energy and cooperative interactions in α-, β-, and γ-cyclodextrin conformers. J Comput Chem 32(14):2996–3004

    Article  CAS  PubMed  Google Scholar 

  16. Vatrál J, Boca R, Linert W (2015) Oxidation properties of dopamine at and near physiological conditions. Monatshefte für Chemie - Chemical Monthly 146

  17. Jha O, Yadav TK, Yadav RA (2018) Structural and vibrational study of a neurotransmitter molecule: dopamine [4-(2-aminoethyl) benzene-1,2-diol]. Spectrochim Acta A Mol Biomol Spectrosc 189:473–484

    Article  CAS  PubMed  Google Scholar 

  18. Ren H-C et al (2018) Two-dimensional infrared spectra of cationic dopamine under different electric fields: theoretical studies from the density function theory anharmonic potential. J Phys Chem C 122(31):17994–18004

    Article  CAS  Google Scholar 

  19. Ciubuc JD et al (2017) Raman computational and experimental studies of dopamine detection. Biosensors 7(4):43

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gong C et al (2019) Stable parent anions of dopamine and adrenaline: a new form of neurotransmitters. J Phys Chem B 123(36):7695–7699

    Article  CAS  PubMed  Google Scholar 

  21. Wang HY, Sun Y, Tang B (2002) Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. Talanta 57(5):899–907

    Article  CAS  PubMed  Google Scholar 

  22. Cabezas C et al (2013) Seven conformers of neutral dopamine revealed in the gas phase. The Journal of Physical Chemistry Letters 4(3):486–490

    Article  CAS  PubMed  Google Scholar 

  23. Nagy PI, Alagona G, Ghio C (1999) Theoretical studies on the conformation of protonated dopamine in the gas phase and in aqueous solution. J Am Chem Soc 121(20):4804–4815

    Article  CAS  Google Scholar 

  24. Lagutschenkov A et al (2011) Infrared spectra of protonated neurotransmitters: dopamine. Phys Chem Chem Phys 13(7):2815–2823

    Article  CAS  PubMed  Google Scholar 

  25. Urban JJ, Cramer CJ, Famini GR (1992) A computational study of solvent effects on the conformation of dopamine. J Am Chem Soc 114(21):8226–8231

    Article  CAS  Google Scholar 

  26. Giesecke J (1980) Refinement of the structure of dopamine hydrochloride. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 36:178–181

    Article  CAS  Google Scholar 

  27. García-Hernández E, Garza J (2017) Reactivity sites in dopamine depend on its intramolecular hydrogen bond. Revista de la Sociedad Química de Mexico 61:222–228

    Google Scholar 

  28. Araújo RL et al (2020) Insights into solid-state properties of dopamine and L-Dopa hydrochloride crystals through DFT calculations. Chem Phys Lett 761:138033

    Article  Google Scholar 

  29. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100

    Article  CAS  Google Scholar 

  30. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  31. Reichardt C (1982) Solvent effects on chemical reactivity. Pure Appl Chem 54(10):1867–1884

    Article  CAS  Google Scholar 

  32. Mohammad-Shiri H et al (2011) Computational and electrochemical studies on the redox reaction of dopamine in aqueous solution. Int J Electrochem Sci 6:317–336

    CAS  Google Scholar 

  33. Lamborelle C, Tapia O (1979) A quantum chemical study of solvent effects on biomolecules: an application of the virtual charge model and the self-consistent reaction field theory of solvent effect to γ-amino butyric acid, β-alanine and glycine. Chem Phys 42(1):25–40

    Article  CAS  Google Scholar 

  34. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55(1):117–129

    Article  Google Scholar 

  35. Izato Y-I et al (2019) A simple heuristic approach to estimate the thermochemistry of condensed-phase molecules based on the polarizable continuum model. Phys Chem Chem Phys 21(35):18920–18929

    Article  CAS  PubMed  Google Scholar 

  36. Casey G et al (2011) Quantum chemical calculations on solvation effects for selected photoreactive aromatic organic molecules of atmospheric relevance. Computational and Theoretical Chemistry 965(2):346–352

    Article  CAS  Google Scholar 

  37. Weinhold F (2012) Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives. J Comput Chem 33(30):2363–2379

    Article  CAS  PubMed  Google Scholar 

  38. Lodewyk MW, Siebert MR, Tantillo DJ (2012) Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem Rev 112(3):1839–1862

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Liu JK, Wang WX (2020) GIAO (13) C NMR calculation with sorted training sets improves accuracy and reliability for structural assignation. J Organomet Chem 85(17):11350–11358

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  41. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  42. Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H … O hydrogen bond lengths in minerals. Monatshefte für Chemie / Chemical Monthly 130(8):1047–1059

    Article  CAS  Google Scholar 

  43. Thiruppathiraja T et al (2020) H, OH and COOH functionalized magnesium phthalocyanine as a catalyst for oxygen reduction reaction (ORR) — a DFT study. Int J Hydrog Energy 45:8540–8548

    Article  CAS  Google Scholar 

  44. Shyama M et al (2021) Complexes of criegee intermediate CH2OO with CO, CO2, H2O, SO2, NO2, CH3OH, HCOOH and CH3CH3CO molecules — a DFT study on bonding, energetics and spectra. Computational and Theoretical Chemistry 1203:113341

    Article  CAS  Google Scholar 

  45. Umadevi P, Senthilkumar L (2014) Influence of metal ions (Zn2+, Cu2+, Ca2+, Mg2+ and Na+) on the water coordinated neutral and zwitterionic l-histidine dimer. RSC Adv 4(90):49040–49052

    Article  CAS  Google Scholar 

  46. Kumar PSV, Raghavendra V, Subramanian V (2016) Bader’s theory of atoms in molecules (AIM) and its applications to chemical bonding. J Chem Sci 128(10):1527–1536

    Article  CAS  Google Scholar 

  47. Priya M, Senthilkumar L, Kolandaivel P (2014) Hydrogen-bonded complexes of serotonin with methanol and ethanol: A DFT study. Struct Chem 25

  48. Yannacone SF, Sethio D, Kraka E (2020) Quantitative assessment of intramolecular hydrogen bonds in neutral histidine. Theor Chem Accounts 139(7):125

    Article  CAS  Google Scholar 

  49. Palanivel U, Lakshmipathi S (2016) Hydrogen bonds in Zif268 proteins — a theoretical perspective. J Biomol Struct Dyn 34(8):1607–1624

    Article  CAS  PubMed  Google Scholar 

  50. Shyama M, Lakshmipathi S (2019) C–H···O interaction between cation and anion in amino acid-based ionic liquids—A DFT study in gas and solvent phase. Struct Chem 30:185–194

  51. Venkatachalam U, Senthilkumar L, Kolandaivel P (2013) Theoretical investigations on the hydrogen bonding of nitrile isomers with H2O, HF, NH3 and H2S. Mol Simul 39:908

    Article  Google Scholar 

  52. Senthilkumar L et al (2006) Hydrogen bonding in substituted formic acid dimers. J Phys Chem A 110(46):12623–12628

    Article  CAS  PubMed  Google Scholar 

  53. Yates JR et al (2005) A combined first principles computational and solid-state NMR study of a molecular crystal: flurbiprofen. Phys Chem Chem Phys 7(7):1402–1407

    Article  CAS  PubMed  Google Scholar 

  54. Mitchell, P., A chemist’s guide to density functional theory. Wolfram Koch and Max C. Holthausen. Wiley-VCH, Weinheim, 2000. x?+?294 pages. 70 ISBN 3-527-29918-1. Applied Organometallic Chemistry - APPL ORGANOMETAL CHEM, 2000. 14: p. 745-746.

Download references

Author information

Authors and Affiliations

Authors

Contributions

T. Sangeetha: conceptualization, methodology, formal analysis, writing — review and editing; Senthilkumar Lakshmipathi: conceptualisation, methodology, formal analysis, writing — review and editing.

Corresponding author

Correspondence to Senthilkumar Lakshmipathi.

Ethics declarations

Ethical statement

All the ethical guidelines have adhered to.

Consent to participate

All authors have participated in this work.

Consent for publication

All authors have agreed to publish this work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1:

All optimized geometries in gas and solvents, geometrical parameters of neutral, cation, and anion dopamine molecules, calculated electronic energy and energy gap, dipole moment, Natural charge of proton acceptor (q1) and proton donor (q2) NMR studies, optimized geometry coordinates (cartesian) of all dopamine molecular conformers are given in supplementary information. (DOCX 5433 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangeetha, T., Lakshmipathi, S. Intramolecular interactions (O-H∙∙∙O, C-H∙∙∙N, N-H∙∙∙π) in isomers of neutral, cation, and anion dopamine molecules: A DFT study on the influence of solvents (water and ethanol). J Mol Model 29, 67 (2023). https://doi.org/10.1007/s00894-023-05466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05466-y

Keywords

Navigation